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Abstract

As the Airborne Laser (ABL) becomes an operational weapon system, the abil-

ity to measure the system’s energy-delivering capability in an operational testing

scenario is necessary. An effort is currently underway between the Air Force Institute

of Technology and Directed Energy Test and Evaluation Capability office to explore

the requirements for a measurement system that will remotely observe a target’s high-

energy laser-induced thermal emission. The desired result of this exploration will be

a method by which the ABL’s performance can be measured and evaluated. The pre-

sented research aids that effort by: 1) developing a spectrally-based infrared camera

simulation to explore how the target surface’s specular and diffuse reflectivities affect

the observed signal-to-noise ratio (SNR) and 2) estimate of the target’s temperature

in the laser spot. This simulation provides for the observed irradiance, scaled by

atmospheric absorption, to consist of the target’s self-emission, the target’s reflected

background emission, and the path emission from the observer to the target. The

observed irradiance is scaled and distributed onto a focal plane array (FPA) by way

of a simulated optical system. The effects induced by the optical system parame-

ters, including aperture size, focal length, detector pixel size, and detector sampling,

are described by modulation transfer functions. Based on the photovoltaic detector’s

quantum efficiency, the observed irradiance will be converted to a current signal. As

for detector noise quantities, values computed in the simulation include photon noise,

dark current noise, and other noise contributions inherent to FPA technology. Using

the simulation, a study is conducted to investigate the effects that detector integra-

tion time and waveband choice has on the observed SNR as the target’s specular

and diffuse reflectivities are independently varied. Additionally, a least-squares opti-

mization is evaluated for estimating the temperature within the laser spot using the

simulation data computed in two different wavebands. The results of this study show

iv
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that the observed SNR is strongly dependent upon the target’s specular and diffuse

reflectivities, but the hottest parts of the laser-induced thermal emission will be very

detectable in the mid-wave infrared band (i.e., 3.4-4.2 µm) for total reflectivities up

to 0.9 with the additional advantage of small background contributions. In the long-

wave infrared band (i.e., 8.5-12 µm), the thermal emission is also very detectable,

but a significant background contribution comes from earthshine. Based on the study

results, the mid-wave infrared band is the best choice for observing the laser-induced

thermal emission. The choice of a 0.125- or 1-msec integration time had little effect on

the overall results. As for estimating temperature in the laser spot, the least-squares

method proved unsuccessful in estimating temperature. The main source of error in

the temperature estimation was the optical system’s point spread function since it

controls how optical energy is distributed onto the image plane via diffraction.

v
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An Infrared Camera Simulation for Estimating Spatial

Temperature Profiles and Signal-to-Noise Ratios of an

Airborne Laser-Illuminated Target

I. Introduction

1.1 Measuring High-Energy Laser Performance

As the U.S. Air Force’s Airborne Laser (ABL) program progresses toward the

operational testing and evaluation phase, three fundamental questions arise concern-

ing the testing of this weapon system.

• Is the ABL’s high-energy laser (HEL) delivering the expected irradiance on the

target?

• How can the expected irradiance be measured and verified?

• What testing instrumentation requirements must be specified in order to ensure

accurate irradiance measurement?

Currently, the Air Force Institute of Technology (AFIT) is working with the Directed

Energy Test and Evaluation Capability (DETEC) office to develop the Delivered

Irradiance Analysis Tool (DIAT). This tool will provide a simulation and algorithm

that will answer the above questions. But in order to attain accurate measurements,

the development of DIAT must take into account factors dictated by the mission

requirements of the test scenario that will complicate the irradiance measurement.

These requirements and their associated effects on the measurement are as follows [4]:

1. Engagement geometry : This factor requires the irradiance measuring system to

be positioned such that it observes and resolves the HEL strikepoint on the

target.
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2. Remote irradiance measurement : This factor insists that the measurement be

non-invasive, which means that the target cannot be modified with sensors and

associated equipment for direct measurement. Additionally, this mission re-

quirement dictates a high degree of safety during testing.

3. High resolution imagery : This factor requires the optical system to be of suffi-

cient performance such that the collected data produces an accurate irradiance

result when it is put through the DIAT algorithm.

4. Uncertain parameters : This factor takes into account test parameters that may

have high degrees of variability and are incapable of being controlled. These

variabilities add to the uncertainty in the irradiance measurement. These vari-

abilities may include transient temperature effects from the HEL heating the

target and positional effects due the engagement geometry.

To incorporate these requirements, the simulation must describe the three main

components that make up the entire engagement scenario. The first component is

the ABL propagating laser energy through a turbulent atmosphere to the target.

In the second component, the laser energy interacts with the target to produce two

observable effects: an induced temperature distribution and reflected laser energy.

The final component takes these two effects and treats them as sources for a remote

observer to collect and measure their radiation. All three components are spatially

defined by the engagement geometry.

The capabilities that are expected of DIAT [4] include:

1. Accurately convert reflected in-band and thermally-emitted target imagery into

incident HEL irradiance on the target to support ABL engagement analysis.

2. Determine the accuracy achievable in the irradiance calculations for a given

observer-to-target geometry, which includes the distance to target, observation

angle with respect to the target, the target’s orientation, and predefined spectral,

spatial and temporal resolutions.
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3. Determine the performance required of practical instrumentation in terms of

spatial, spectral and temporal resolution, while operating with sensor platform

jitter and atmospheric turbulence, to achieve the two previous capabilities.

1.2 Problem Definition

Given DIAT’s immense scope and requirements, this thesis focuses on the remote

observer and explores the requirements for a measurement system that will observe the

target’s laser-induced thermal emission. To begin this exploration, a spectral infrared

(IR) camera simulation is developed that meets the requirements and expectations

listed in the previous section. Three aspects of the simulation must be addressed in

order to meet these expectations and to provide an accurate and robust simulation.

First, all possible radiation sources must be accounted and modeled to produce an

accurate signal. These sources include the target’s self emission, reflected-background

emission, and the observer-to-target atmospheric path emission. The second aspect

involves the optical system and its effects on the collected irradiance; consequently,

the simulation must model the blurring effects of the optics and a focal plane array

(FPA) which samples the collected image. Lastly, the third aspect is the FPA detec-

tor material, which will convert the incident irradiance via the detector’s quantum

efficiency into an electronic signal. However, knowing the signal is not enough; the

simulation must account for noise quantities inherent to photovoltaic detector tech-

nology and FPA read-out integrated circuitry (ROIC), which will mute the perceived

signal strength.

All of the simulation’s aspects have parameters associated with them that will

affect how the irradiance is measured. With a completed IR camera simulation, a

parametric study can begin to see how these measurement system parameters affect

the measured irradiance. For this thesis, the initial parametric study will investigate

the effects of three parameters: the target’s reflectance, the detector’s integration

time, and the choice of waveband to collect IR radiation. However, a more significant

contribution can be made from this initial study. The IR camera simulation can

3



www.manaraa.com

help devise the methodology by which metrics are identified to quantify the ABL’s

performance. The metric that this thesis attempts to ascertain is the accuracy to

which temperatures in the target’s laser-induced hot spot can be estimated using two

hot-spot thermal bands.

From this overall study, many fundamental questions concerning the test instru-

mentation can be answered:

• How will the target’s reflectivity affect the measured irradiance?

• What kind of signal-to-noise ratios (SNR) can be expected for different target

reflectivity values?

• What waveband is the best choice for the irradiance measurement?

• Can the HEL-induced hot-spot temperatures be estimated?

• What factors contribute to the estimated temperature’s uncertainty?

1.3 Previous Research and Development

In researching the numerous topics associated with this thesis, a previous AFIT

thesis titled, “Radiometric Analysis of Daytime Satellite Detection,” by Lilevjen pro-

vides the primary basis for this research [15]. Even though her model application

is quite different from this thesis, she developed a simple “end-to-end” radiometric

model that accounted for a source, the sun in her case, illuminating a planar, diffuse

“satellite” whose reflected radiance would then be collected by an optic and ultimately

a single-pixel detector [15:21]. She also incorporated many factors that attenuate the

collected irradiance such as atmospheric transmission, optical transmission, and spec-

tral filter transmission. For her computation of SNR, she incorporated the effects that

an InGaAs photovoltaic detector have in producing the signal along with the photon,

Johnson, and shot noises associated with photovoltaic technology [15:37].

Overall, Lilevjen’s model is a complete radiometric simulation for her scenario

of observing satellites, but the question arises, “Does the model have sufficient fidelity
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to simulate a DIAT scenario?” The answer is no; Lilevjen’s model is too simplistic

to be useful for DIAT because of three assumptions made in her thesis. First, the as-

sumption of planar satellite geometry [15:20] significantly reduces model fidelity since

it removes the inherent ability of realistic geometry to redirect radiation accordingly.

For a simulation to have credibility in its predictions, representative target geome-

tries should always be modeled. For instance, the geometry that this thesis must

incorporate is the cylindrical shape of the missile body. Second, Lilevjen’s model

does not account for all possible sources for an observed signal. She is only looking at

reflected and background radiation while ignoring the satellite’s self-emission contribu-

tion [15:21]. Given the desired fidelity for DIAT, this thesis must account all possible

radiation sources. Last, Lilevjen treats the optical system simply as a light-gathering

tool for a single detector in the creation of her signal. This assumption completely

disregards the fact that the optical system is really an image-forming system which

has its own ability to distribute optical radiation onto an image plane according to

diffraction theory. This image will have spatial variations in the collected optical

radiation. Using an FPA enables the detection of these spatial variations; while, a

single-element detector ignores them. Also, the number of noise sources in a realistic

system is more than the three Lilevjen assumed for photovoltaic detectors. This thesis

incorporates the noise effects of the photovoltaic detector along with those from the

ROIC.

1.4 Thesis Overview

This thesis is organized as follows:

• Chapter I : Provides an introduction to and motivation of the problem and

details what this thesis attempts to accomplish.

• Chapter II : Reviews the necessary theoretical concepts that are used to develop

the IR camera simulation.
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• Chapter III : Discusses and details the implementation of the complete IR cam-

era simulation and all its parameters.

• Chapter IV : Presents and analyzes the results of the parametric study and

temperature estimation which were generated by the IR camera simulation.

• Chapter V : Provides conclusions to the analyses and recommends areas of con-

tinued research for the IR camera simulation.
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II. Background Theory

This chapter provides the foundational theory that is the basis for the IR camera

simulation. This theoretical discussion explores the three main areas which make

up this IR camera simulation: the fundamentals of radiometry, which determine the

amount of IR radiation emitted by a source and ultimately collected by an optic

and detector; the modulation transfer function (MTF), which provides the means

of simulating the effects of the optical system distributing the radiation onto the

image plane; and the detector performance, which provides the means of detecting

and measuring the amount of IR radiation.

2.1 Basic Radiometry

To understand how the HEL-induced hot spot on the missile can be observed

and measured, an understanding of radiometry is required. The first step is to define

the terms used in radiometry.

2.1.1 Definition of Terms. Radiometric quantities can be defined either in

terms of energy units or photon units. Table 2.1 displays radiometric quantities and

their associated units. As a means of differentiating between quantities, the energy-

based units are subscripted with e; the photon-based units are subscripted with q.

Table 2.1: Radiometric quantities and their units.

Energy Units Photon Units
Quantity Symbol Units Symbol Units

Flux φe Watts φq photons/s
Intensity Ie Watts/sr Iq photons/(s · sr)
Irradiance Ee Watts/cm2 Eq photons/cm2 · s
Exitance Me Watts/cm2 Mq photons/cm2 · s
Radiance Le Watts/(cm2 · sr) Lq photons/(cm2 · s · sr)
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To translate between energy-based and photon-based units, use the relationship

that defines the energy of a photon

Ephoton =
hc

λ
(2.1)

where h is Planck’s constant (6.626 × 10−34[J · s]), c is the speed of light (2.998 ×

108[m/s]), and λ is the wavelength associated with the photon.

Before a full discussion can begin on the quantities described above, the concept

of the solid angle (Ω) must be addressed since intensity and radiance incorporate this

quantity with units of steradians [sr ]. The solid angle is expressed as the ratio between

an area on the surface of a sphere (A) and the sphere’s radius (r):

Ω =
A

r2
(2.2)

A sufficiently small, planar area (A � r2) can also be viewed from some distance, r,

and if it is observed from some angle, θ, defined by the surface normal and the line

of sight, the solid angle subtended by that area would be defined by:

Ωtiltedsurface =

(
A

r2

)
cos θ (2.3)

The practical impact that the solid angle has on radiometric problems is that it defines

either the solid angle through which the source emits radiation or the field of view

(FOV) through which the detector collects radiation.

With solid angle defined, a discussion on the radiometric quantities in Table

2.1 can begin. Radiance is the first quantity discussed since it provides a general

description for the source. Its textbook definition states that it is the amount of power

radiated per unit projected source area per unit solid angle. Radiance is expressed in

differential form by [5:45]:

Le =
∂2φe

∂As cos θs∂Ωd

(2.4)
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where φe is the radiant flux [W ], As is the area of the source, θs is the look angle with

respect to the source normal and the detector, and Ωd is the solid angle defined from

the differential source element to a detector area that subtends it. The notation of

equation (2.4) indicates that the radiance describes differential changes in the power

with respect to differental changes in the projected source area and the detector’s

solid angle.

From this fundamental equation, all other radiometric quantities can be derived.

Starting with radiant intensity, which is defined as the amount of radiant flux per unit

solid angle, its value can be computed as:

Ie =
∂φe

∂Ωd

=

∫
As

Le cos θsdAs. (2.5)

Modifying (2.4) to provide radiant exitance, which is defined as the amount of radiant

flux leaving a surface per unit surface area, yields:

Me =
∂φe

∂As

=

∫
Ωd

Le cos θsdΩd. (2.6)

To find the radiant irradiance, which is the amount of radiant flux incident upon a

surface per unit surface area, the solid angle of the detector of the form in (2.3) must

be further defined with its differential form as

dΩd =

(
dAd

r2

)
cos θd (2.7)

where Ad is the area of the incident surface, r is the line-of-sight range from the

incident surface to the source, and cos θd is the angle from the line-of-sight range and

the normal of the incident surface. Substituting (2.7) into (2.4) yields the definition

of irradiance:

Ee =
∂φe

∂Ad

=

∫
Ad

Le cos θs
cos θd

r2
dAs. (2.8)
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The final radiometric quantity that needs to be computed is the total radiant flux.

This value can be computed by simply integrating over the source area and either the

solid angle of the detector or the detector area as is shown in the following equations,

respectively:

φe =

∫
Ωd

∫
As

Le cos θsdAsdΩd (2.9)

φe =

∫
Ad

∫
As

Le cos θs
cos θd

r2
dAsdAd (2.10)

2.1.1.1 Lambertian Surfaces. Often in basic radiometry, an implicit

assumption is usually made about the type of sources that emit radiation: all sur-

faces are Lambertian radiators. Lambertian radiators are characterized as sources

whose radiance is independent of view angle, θs. The main advantage of assuming a

Lambertian radiator is in the relationship that exists between radiance and exitance

under this assumption [5:47]:

Me

[
W

cm2

]
= Le

[
W

cm2 · sr

]
π[sr] (2.11)

The factor of π results from the integration of the solid angle in (2.6) over the entire

hemisphere. In the real world, no sources are perfectly Lambertian.

2.1.2 Blackbody Radiation. A blackbody is a perfect radiator. As Dereniak

states [5:55],

The blackbody radiates the maximum number of photons per unit time
from a surface area in the wavelength interval that any body can radiate
at a given kinetic temperature. No surface that is in thermodynamic
equilibrium can radiate more photons.

Mathematically, blackbody radiation is described by the following equations,

known as Planck’s equations, in energy-based units and in photon-based units, re-

spectively [5:66]:

Le,λ(λ, T ) =
2hc2

λ5 (ehc/λkBT − 1)
(2.12)
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Lq,λ(λ, T ) =
2c

λ4 (ehc/λkBT − 1)
(2.13)

where kB is Boltzmann’s constant (1.381 × 10−23[J/K]) and T is the temperature

[K ]. These equations describe the spectral radiance that a source emits in terms of

the temperature of that body. Figure 2.1 demonstrates the shape of blackbody curves

for different temperatures across an IR waveband of 1-12 µm. As a note, the radiance

Figure 2.1: Ideal blackbody curves in terms of spectral radiance for the
following temperatures: 300 K, 400 K, 500 K, 600 K, 700 K, and 800 K.

defined in equation (2.4) may be different than the spectral radiance defined here in

that spectral radiance is defined as the radiance per unit wavelength. Typical units

assigned to spectral radiance are [W/(cm2 · sr · µm)]. Total radiance, as might be

inferred in Section 2.1.1, results from the integration of the spectral radiance over a

finite waveband:

Le =

λ2∫
λ1

Le,λ(λ, T )dλ (2.14)

11



www.manaraa.com

One useful relationship that comes from Planck’s equation is Wien’s Displace-

ment Law. Wien’s Law is computed by taking the derivative of Plank’s equation with

respect to wavelength and setting it equal to zero to find the wavelength of peak spec-

tral radiance as function of temperature. Using the energy-based Planck’s equation

(2.12), Wien’s Displacement Law is described by:

λmax =
2898µm ·K

T
(2.15)

2.1.3 Emissivity. In the real world, no object is a perfect blackbody. As it

is defined, a blackbody defines the upper limit of the spectral radiance produced by a

source. Since no object is a perfect blackbody, a quantity needs to be defined by which

the blackbody curve is scaled so that it represents what real objects radiate. This

scaling is accomplished by defining an object’s emissivity. Emissivity (ε) is defined as

the ratio between the exitance of an actual source and the exitance of a blackbody,

both of which are at the same temperature [5:72]:

ε (λ, T ) =
Me,source (λ, T )

Me,blackbody (λ, T )
(2.16)

In all cases, ε ≤ 1.

Sources can be divided into several different classifications based on their emis-

sivities. When a source has an emissivity of one, it is called a blackbody. If the

emissivity is less than one and is the same value for all wavelengths, the source is

classified as a graybody. In the case that the source’s emissivity varies with wave-

length, it is classified as a selective emitter. Selective emitters are the most accurate

representation of emissivity.

2.1.3.1 Kirchhoff’s Law. In order to understand what emissivity is

fundamentally, a return to first principles is required. The law of conservation of
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energy requires that [5:78]

φincident = φreflected + φtransmitted + φabsorbed. (2.17)

If each term is normalized with respect to the incident flux, φincident, a conservation

expression develops that describes (2.17) in terms of reflectivity, ρ, transmissivity, τ ,

and absorptivity, α.

ρ + τ + α = 1 (2.18)

Applying this conservation expression to an opaque body (i.e., τ = 0), incident flux is

either reflected or absorbed, and (2.18) can be modified to represent the relationship

between absorptivity and reflectivity.

α = 1− ρ (2.19)

Furthermore, when a mass is in thermodynamic equilibrium with its surrounding

environment, if it absorbs the incident radiation, it must re-radiate an equal amount

of energy in order to remain in thermal equilibrium. This requirement is the crux of

Kirchhoff’s law; absorptivity equals emissivity:

ε = α. (2.20)

This conclusion applies to both integrated and spectral radiometric values. Applying

this conclusion allows the following statement to be made: good absorbers are good

emitters.

2.1.4 Radiometric Measures of Temperature. When observing an object

radiometrically, as will be the case for this thesis, knowing its temperature is usually

desired. The measured flux is a function of both the object’s temperature and emis-

sivity, which leads to a situation where there is one equation and two unknowns. If

the object’s emissivity is a known quantity, its true temperature can be determined
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from the measured flux. However, if emissivity is an unknown quantity, methods and

definitions exist that allow for temperatures to be estimated. Four such methods of

estimation are radiation temperature, apparent temperature, brightness temperature,

and color temperature.

2.1.4.1 Radiation Temperature. Radiation temperature, TR, is defined

as the blackbody source temperature that gives the same total exitance over all wave-

lengths as the measured exitance [16]. If a source is characterized as a graybody, the

true temperature can be computed with the Stefan-Boltzmann law by the following:

Me,meas = εσeT
4 = σeT

4
R which yields T =

TR

ε1/4
(2.21)

where σe is the Stefan-Boltzmann’s constant (
2π5k4

B

15h3c2
≈ 5.676× 10−12[W/(cm2 ·K4)]).

2.1.4.2 Apparent Temperature. In the real world, collection of radi-

ation over all wavelengths as described by the Stefan-Boltzmann law is impractical.

Therefore, a quantity similar to radiation temperature, but defined as the blackbody

source temperature that gives the same total exitance over a waveband, ∆λ, is ap-

parent temperature, TA:

Me,meas =

∫
∆λ

ε(λ)Me,BB(λ, T )dλ =

∫
∆λ

Me,BB(λ, TA)dλ. (2.22)

2.1.4.3 Brightness Temperature. Brightness temperature, TB, is de-

fined as the blackbody temperature of a source that gives the same exitance in a

narrow spectral region, ∆λ, about a central wavelength, λ0, as the measured exitance

at λ0. If the emissivity of the object is known, the true temperature can found in the

following expression, assuming a graybody:

Me (λ0, TB) =
2πhc2

λ5
0 (ehc/λ0kTB − 1)

= ε
2πhc2

λ5
0 (ehc/λ0kT − 1)

= Mmeas (λ0, T ) . (2.23)
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Solving for T yields the true temperature of the object [16]:

T =
hc

λ0k ln [ε (ehc/λ0kTB − 1) + 1]
(2.24)

2.1.4.4 Color Temperature. Color temperature, TC , is defined as the

blackbody temperature of a source that best matches the measured exitances in at

least two spectral bands. This temperature is computed by taking the ratio of the

measured exitances.

Me,meas (λ1, T )

Me,meas (λ2, T )
=

ε1(λ1)λ
5
2

(
ehc/λ2kT − 1

)
ε2(λ2)λ5

1 (ehc/λ1kT − 1)
=

λ5
2

(
ehc/λ2kTC − 1

)
λ5

1 (ehc/λ1kTC − 1)
(2.25)

In the special case that the object can be modeled as a graybody, TC is the true

temperature of the object.

2.2 Infrared Optical System

With the fundamentals of radiometry defined, the next step is to develop the

background theory behind the IR optical system which includes the optic and detector.

This section of theory is important because it provides the basis for understanding

how the radiometric signal is collected and generates an electronic signal.

2.2.1 Transmission Functions (Atmospheric, Optical, and Spectral Filter).

In a realistic scenario, the radiometric signal of an object, in spectral terms, observed

by the optical system at some range is not the same signal originally emitted by the

object. The signal experiences spectral attenuation from three sources. The first

is naturally occurring because the attenuation is due to the atmosphere. The last

two are based on choices made by the system designer which describe how much the

optical system and a spectral filter spectrally attenuate the signal.

2.2.1.1 Atmospheric Transmission Functions. The atmospheric trans-

mission function provides the means for describing how the atmosphere spectrally at-
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tenuates the radiometric signal from the object to the observing optic. The function

provides a scaling factor between zero and one as a function of wavelength which

will weight the spectral components in a radiometric signal accordingly; one means

that 100% of the spectral component was passed, and zero means the spectral com-

ponent was completely blocked. An example of what an atmospheric transmission

function looks like is shown in Figure 2.2. As is seen in Figure 2.2, specific spectral

Figure 2.2: Example atmospheric transmission profile for a 1-km path
length. [6:128].

regions, like 5-8 µm, allow for zero transmission. The reason for this phenomenon

is that constituent molecules in the atmosphere, like H2O and CO2, have the abil-

ity to absorb photons at these wavelengths. Figure 2.3 shows what wavelengths and

primary atmospheric molecules contribute to the absorption in the IR spectral band.

The amount of absorption experienced is highly dependent on the concentration of

those absorbing molecules, so variables such as altitude and path length can have sig-

nificant impacts on the amount of absorption experienced. The physics behind this

phenomenon are not central to this thesis, but its effects must be accounted for in

order to yield a high fidelity representation of the collected radiometric signal. In this

thesis, this accounting is accomplished by using Phillips Laboratory Expert-assisted

User Software (PLEXUS), which uses the Moderate Resolution Atmospheric Trans-
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Figure 2.3: Absorbing molecules that affect the atmospheric transmission
in the IR spectrum for a 6000 ft horizontal path at sea level. [20].

mission (MODTRAN) program to compute the atmospheric transmission function

based on engagement geometry and meteorological parameters.

2.2.1.2 Optical Transmission Functions. The optical transmission

function provides the means for describing how the optical system spectrally atten-

uates the observed radiometric signal as it passes through the optical system onto

the spectral filter. The function provides a scaling factor between zero and one as

a function of wavelength which will weight the spectral components in the observed

radiometric signal accordingly; one means that 100% of the spectral component was

passed, and zero means the spectral component was completely blocked. This attenu-

ation is due to optical elements absorbing or reflecting small amounts of optical energy

while allowing the remaining energy to be transmitted. The amount of attenuation is

determined by the choice of materials used in creating the optical elements and the

number of optical elements in the optical system. As an example, zinc selenide, which

is used in optical elements for forward looking IR systems, has an average transmission

of 0.70 in the 8-to-12-µm region [1, 13].

17



www.manaraa.com

2.2.1.3 Spectral Filter Transmission Functions. The spectral filter

transmission function provides the means for describing how the spectral filter spec-

trally attenuates the collected radiometric signal as it passes through the filter onto the

detector. This function provides a scaling factor between zero and one as a function

of wavelength which will weight the spectral components in the collected radiometric

signal accordingly; one means that 100% of the spectral component was passed, and

zero means the spectral component was completely blocked. The primary purpose of

the spectral filter is to limit the spectral extent of the collected signal to a waveband

of interest; the choice of that waveband is determined by a system designer. As with

the optical transmission function, attenuation in the spectral filter is due to the filter

material absorbing or partially reflecting certain wavelengths of optical energy while

allowing others to be transmitted. Quality spectral filters will have a high transmit-

tance that is constant across the passband, and a low transmittance outside of the

passband.

2.2.2 Modulation Transfer Functions. The next theoretical topic that must

be discussed involves modeling the IR camera using the MTF. The necessity of this

discussion is due to the fact that optical systems do not form ideal images of objects;

in reality, images are blurred due to diffraction effects inherent to the optical system.

As a result, the irradiance that is collected by an optic is distributed across the image

plane where a detector like an FPA is located. For example, when an optical system

with a circular aperture observes a point source, the irradiance does not reform into the

ideal image of the point source. Instead, the optical system distributes the irradiance

into a form known as the Airy disk. Mathematically, the Airy disk is described by

a Bessel function of the first kind, order one, as is shown in Figure 2.4 [10:15]. The

blurring that occurs because of the optical system due to diffraction can ultimately be

characterized through the application of linear systems theory to yield a tool called the

modulation transfer function. Since linear systems theory is the basis for the MTF,

the MTF’s construction will be centered around the concepts of spatial frequency and

18



www.manaraa.com

the Fourier transform. Therefore, this section will define spatial frequency, the MTF

and how it is computed, discuss the spatial invariance assumption for the MTF, and

demonstrate how the MTF is applied to an image.

Figure 2.4: Diffraction-limited Airy disk pattern produced by a circular
pupil. [10:14].

2.2.2.1 Spatial Frequency. Spatial frequency is a measure of how

features in a scene, which can be viewed in terms of irradiance, vary in terms of

distance. Rapidly changing irradiance patterns correspond to high spatial frequen-

cies; conversely, irradiances that change slowly with position correspond to low spa-

tial frequencies. The units for spatial frequency are typically expressed in terms of

1/[distance]. As a visual demonstration of this idea, consider Figure 2.5. As the

irradiance varies across this one-dimensional slice of the two-dimensional irradiance

distribution, features of both low and high spatial content can be seen given the dis-

tance over which the irradiance varies. The power of this spatial frequency concept is

fully realized with the realization that all the Fourier frequency decomposition tools

developed in linear systems theory for time-domain electrical signals can be applied

to images.
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Figure 2.5: Generalized definition of a spatial-domain irradiance distribu-
tion. [2:5].

2.2.2.2 Definition of the MTF. By definition, the MTF is the magni-

tude response of the detection system, so it provides a weighting function to describe

the amount of contrast in the system for a given spatial frequency. This effect is

demonstrated in Figure 2.6. As the spatial frequency content increases, the amount

of contrast seen at the image plane of the optical system goes to zero. The point at

which the contrast is zero defines the cutoff spatial frequency of the MTF. The power

of the MTF comes from its ability to model many different components and factors

that make up an IR simulation. Examples include the optical system, detector size,

sampling effects in an FPA, atmospheric turbulence, and motion effects. The MTFs

that are represented ultimately depend upon the requirements of the simulation.

2.2.2.3 Methods of Computing the Optical MTF. In order to compute

the MTF of the optical system, recognition is required that it comes from a more

generalized description of the optical system since the MTF is only the magnitude

response. That generalized description is called the optical transfer function (OTF).

The OTF provides a more complete description of optical system effects on collected

light because it represents both magnitude and phase responses. The MTF can be
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Figure 2.6: Modulation transfer function effects on the modulation depth
as spatial frequency increases. [2:12].

interpreted from the OTF as being the magnitude response by [2:70]:

OTF (fX , fY ) = MTF (fX , fY )e−iPTF (fX ,fY ) (2.26)

where PTF is the phase transfer function, and fX and fY are spatial frequencies.

Since this thesis is concerned with only incoherent, diffraction-limited imaging, phase

effects can be ignored because diffraction-limited OTFs are always real and non-

negative [10:142].
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Computation of the MTF can be done using two different methods. For the

first method, the diffraction-limited OTF is computed using [10:141]:

OTF (fX , fY ) =

∞∫
−∞

∞∫
−∞

P
(
x + λsifX

2
, y + λsifY

2

)
P
(
x− λsifX

2
, y − λsifY

2

)
dxdy

∞∫
−∞

∞∫
−∞

P (x, y)dxdy

(2.27)

where P (x, y) is the pupil function that represents the pupil of the optical system

and si is the distance the light is propagated, which in the case of this thesis is the

distance to the image plane. The MTF is simply:

MTF (fX , fY ) = |OTF (fX , fY )| (2.28)

As a note, equation (2.27) has an important geometric interpretation. The numerator

represents an area of overlap between two pupil functions whose centers are located

diametrically opposite of each other in real space with Cartesian coordinates, (x, y),

at
(

λsifX

2
, λsifY

2

)
and

(
−λsifX

2
, −λsifY

2

)
, which effectively describes an autocorrelation.

The denominator provides a normalization based the total area of the pupil [10:142].

Again in (2.27), notice the two pupil functions’ dependencies on wavelength. This

critical observation has a significant impact in the creation of this simulation; the

OTF and ultimately the MTF are spectral quantities. As a consequence, the MTFs

that are modeled will have to vary over the simulated waveband. This consequence

is additionally supported by the computation of the MTF’s cutoff frequency, which

also has a dependence upon wavelength as seen in the following equation:

fcutoff =
1

λF/#
where F/# =

f

D
(2.29)

where f is the effective focal length of the optical system and D is the aperture

diameter.

22



www.manaraa.com

The second method provides for a much simpler way of computing the MTF than

the first by requiring the computation of the optical system’s point spread function

(PSF). By definition, the PSF is simply the optical system’s response to a point source,

which is analogous to the impulse response as defined by linear systems theory. Once

the PSF has been computed, simply taking the two-dimensional Fourier transform of

the PSF will yield the MTF, as shown by:

MTFoptics(fX , fY ) = |FF {PSF (x, y)} | (2.30)

where FF notationally represents a two-dimensional Fourier transform. A two-

dimensional MTF is required since the PSF is a function of two spatial components.

Additionally, this method provides a much easier way of taking into account complex

pupil functions since all pupil geometry effects are included within the PSF. In this

thesis, the implemented pupil function is described by a circular aperture that con-

tains a circular, central obscuration, which is indicative of catadioptric telescopes like

Schmidt-Cassegrain. The method by which the PSF is computed will be discussed in

the next chapter.

2.2.2.4 Spatial Invariance Assumption for the MTF. Since the MTF

is computed with the Fourier transform, certain assumptions must be made about the

MTF’s properties so that it can meet the mathematical requirements of the Fourier

transform. Since this thesis focuses on only incoherent imaging, the only MTF prop-

erty of concern is spatial invariance, which Williams and Becklund term as isopla-

natism [24:60]. Spatial invariance requires that a translation of the object in the

object plane produces just a proportional translation of the entire PSF in the image

plane; no other change occurs within the PSF.

2.2.2.5 Applying the MTF to an Image. Applying the MTF’s effects

on an irradiance distribution, E(x,y), can be achieved using one of two methods.

The most direct method is two-dimensionally convolving the PSF with the irradiance
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distribution in order to yield the resulting image, as shown by:

Eimg(x, y) = PSF (x, y)⊗ E(x, y) (2.31)

where E(x, y) is the ideal irradiance distribution of an image at the image place and

Eimg(x, y) is the irradiance distribution at the image plane due to the optical system

resulting from the convolution. The second method, which is computationally easier,

applies linear systems theory to (2.31) to yield the following:

Eimg(x, y) = F−1F−1 [MTFsys(fX , fY )×FF {E(x, y)}] (2.32)

where F−1F−1 notationally represents a two-dimensional inverse Fourier transform.

The importance of the above equation is primarily due to the MTFsys(fX , fY ) term; it

allows the overall detection system to be represented by not just the optical MTF, but

can include MTFs defining FPA pixel sizes, FPA image sampling effects, atmospheric

turbulence, and other non-optical MTFs like motion and vibration effects. To get

the overall system-level MTF, multiplication of the various individual MTFs is all

that is required. In the case of this thesis, only the MTFs for optical, FPA pixel

size, sampling, and atmospheric turbulence are considered. The details behind each

of these MTFs are discussed in Chapter III.

2.2.3 Detector Response. The final theoretical area that merits discussion

is the detector response, which will take the irradiance collected by the optical sys-

tem and convert that radiation into an electronic current that can be measured. For

this thesis, the chosen detector technology that is modeled is a photovoltaic FPA.

Therefore, this section will provide an overview of photovoltaic technology, quantum

efficiency, and the relationship between integration time and noise-equivalent band-

width.
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2.2.3.1 Photovoltaic Detectors. A fundamental description of a pho-

tovoltaic detector is that it is a semiconductor diode, and it produces a voltage or

current that is proportional to the amount of photon radiation. Looking at current

specifically, the amount of photogenerated current produced by incident photons is

determined by [5:93]:

ig = ηEqAdq (2.33)

where η is the quantum efficiency of the detector material, Ad is the area of the

detector, and q is the charge of an electron (1.602 × 10−19[C]). The photogenerated

current will get coupled into the overall current through the diode by [5:93]:

i = i0
(
eqv/bkBTd − 1

)
− ig (2.34)

where i0 is the reverse saturation current, v is the applied voltage across the diode,

Td is the diode’s temperature, and b is a nonlinearity factor. The effect that the

photocurrent has on the diode current is shown in the I-V curve in Figure 2.7. How

the photodetector is biased will determine the portion of the total diode current that

is not photogenerated; this is called dark current. Typically, FPA photodetectors are

strongly reverse biased in order to move electrons through the junction. As a result,

the dark current will be some value along the flat part of the I-V curve in Figure 2.7.

2.2.3.2 Quantum Efficiency. The parameter that expresses how well a

photon detector material converts an incident photon into a photogenerated electron

is quantum efficiency, η. Like the transmission functions discussed in section 2.2.1,

quantum efficiency is a spectral quantity that varies between zero and one. As a rule,

quantum efficiency restricts the counting of electrons to only those photogenerated,

instead of electrons generated by other gain mechanisms internal to a detector, and

it encapsulates effects due to absorption, reflection, scattering, and electron recombi-

nation [5:87].

25



www.manaraa.com

Figure 2.7: Characteristic current-voltage (I-V) curve for a photodi-
ode. [5:92].

Quantum efficiency can be expressed as

η(λ) =

(
1− (n(λ)− 1)2

(n(λ) + 1)2

)(
1− eα(λ)lx

)
(2.35)

where the quantity (n(λ)−1)2

(n(λ)+1)2
represents the Fresnel reflectance, n(λ) is the spectral

index of refraction, α(λ) is the spectrally-defined absorption coefficient, and lx cor-

responds to the thickness of the detector material [5:89]. In order to have a high

quantum efficiency, the Fresnel reflectance must be low so that the optical radiation

can get into the detector material, and the detector thickness should be large enough

to ensure that the optical radiation can be absorbed [5:89]. Fresnel reflectance is

the primary controlling factor in the quantum efficiency as shorter wavelengths. The

reduction in quantum efficiency at longer wavelengths is controlled by the detector’s

absorptivity. This phenomenon is due to the tendency of longer wavelengths to be

transmitted through the material instead of being absorbed [5:90]. The wavelength
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corresponding to no absorption since the photon energy is less than bandgap energy in

the detector material is called the cutoff wavelength. An example quantum efficiency

curve is shown in Figure 2.8. This curve was generated using measured complex

Figure 2.8: Quantum efficiency for InSb at 300K.

index-of-refraction data for indium antimonide (InSb) at 300 K [18:495].

Complex index-of-refraction data from sources like Palik [18] provides the means

to simulate detector response with a high degree of fidelity. This capability is possible

since the real part of the complex index of refraction is the value associated with

equation (2.35), and the imaginary part represents an extinction coefficient of the

material (k), which can be converted to an absorption coefficient by [19:656]:

α(λ) =
4πk

λ
. (2.36)

2.2.3.3 Noise-Equivalent Bandwidth. Since this thesis will model the

effects that integration time has on the SNR, it is important to discuss the relationship

between integration time (τ) and the noise-equivalent bandwidth (∆f). Assuming the
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noise power spectrum from the detector is white noise, the noise bandwidth can be

computed as [5:189]:

∆f =
1

G2(f0)

∞∫
0

G2(f)df (2.37)

where G(f) is the voltage gain as a function of frequency and f0 corresponds to the

frequency associated with maximum gain. Feeding a time-domain, rectangular pulse

of width, τ , whose Fourier transform is defined by

g(t) = rect

(
t

τ

)
⇐⇒ G(f) = τ

(
sin πτf

πτf

)
, (2.38)

into (2.37) yields a noise-equivalent bandwidth of

∆f =
1

2τ
. (2.39)

The implication of this equation is that as integration time increases, the noise-

equivalent bandwidth will decrease. In this thesis, equation (2.39) is the relationship

used to relate integration time to the noise-equivalent bandwidth.

2.3 Summary

From this chapter, the definitions and theories behind optical radiometry, optical

system modeling, and photovoltaic detector response provide a solid foundation and

necessary tools in order to construct the IR camera simulation. In Chapter III, all

these tools will be put into practice as the various components of the IR camera

simulation are built. Chapter III will provide in-depth details and discussion behind

the development of the simulation.
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III. Model Development

This chapter details the development of the overall IR camera simulation. This dis-

cussion will address the following questions:

• How is the simulation fundamentally setup from the target to the observer?

• How is the radiometry computed to provide a realistic signal?

• How are the various MTFs representing different components modeled and what

are their effects?

• How is the photovoltaic FPA detector modeled?

• What detector noise sources limit the computed signal?

3.1 Modeling Methodology

Two aspects in the IR camera simulation’s modeling of the target-to-observer

scenario must be discussed first since they affect the overall simulation setup. The first

aspect discusses why the simulation is a spectral model. The second aspect discusses

how physical sizes are scaled in the three planes that make up the simulation: the

object plane, the pupil/aperture plane, and the image plane.

3.1.1 Spectral Model. In order to provide the highest possible fidelity, the

model treats many variables as spectral quantities in order to account for realistic

variations in their values at different wavelengths. This requirement is justified when

considering variables, like atmospheric transmission, which serve to attenuate the re-

ceived signal. By not incorporating its spectral effects over a waveband, the computed

signal would be an overestimate of what really is measured.

3.1.2 Scaling in the Object, Aperture, and Image Planes. The scaling be-

tween the object, aperture and image planes is fundamentally important for this

simulation because it ensures that the radiometry is properly scaled throughout the

simulation. This discussion starts with the object plane since the main simulation
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input is located there. The main simulation input is a temperature distribution that

varies with position, T (xtrg, ytrg). The details of what T (xtrg, ytrg) represents and how

it is computed occurs in section 3.2.2. Within MATLAB, which was used to create

this simulation, T (xtrg, ytrg) is represented as a matrix of N ×N elements. As a note,

the self-emitted radiance computations use T (xtrg, ytrg), and those answers result in

N × N matrices. In the computation of T (xtrg, ytrg), the physical spacing in the

object plane between each adjacent matrix element, ∆xtrg, must be specified by the

simulation user. So, as a result of this representation, any temperature represented

in the matrix corresponds to an area defined by ∆x2
trg.

For this simulation, the simulated optical system locates the detector at the

image plane as determined by the Gaussian lens equation from geometric optics

1

strg

+
1

simg

=
1

feff

=⇒ simg =

[
1

feff

− 1

strg

]−1

(3.1)

where strg is the distance from the optic to the object plane, simg is the distance

from the optic to the image plane, and feff is the effective focal length of the optical

system. From equation (3.1), a magnification factor, Mopt, relating size in the object

plane to that in the image plane is computed by dividing simg by strg. As a result,

∆xtrg translates to the image plane by this magnification term.

∆ximg = Mopt ×∆xtrg (3.2)

In terms of the simulation, ∆ximg corresponds to the spacing between adjacent ele-

ments in the N ×N matrix in the image plane.

With ∆ximg computed, the image plane can be represented in terms of spatial

frequency by a sampling equation from wave optics [9]:

∆fimg =
1

N∆ximg

(3.3)
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where ∆fimg represents the spatial frequency spacing between matrix elements in the

Fourier-transformed image, and N is the number of matrix elements in one dimension,

which for this simulation, will be the same N as in T (xtrg, ytrg). Spatial frequency

spacing is very important in the simulation because the MTFs will apply their contrast

weights to the spatial frequencies spaced by ∆fimg. As mentioned in the previous

chapter, the MTFs are spectral quantities because their cutoff spatial frequencies

are functions of wavelength. The advantage of this development of ∆fimg is that it

maintains the same spatial frequency scale independent of wavelength.

As a consequence of this wavelength-independent spatial frequency scale, all

MTFs must be computed to ensure their values are registered to the same spatial

frequency scale. To accomplish this spatial frequency registering, the physical scaling

in the aperture plane must be defined, which is computed from another wave-optics

sampling equation relating physical sizes between the aperture and image planes [9]:

∆xap =
λsimg

N∆ximg

(3.4)

where ∆xap is the spacing between adjacent matrix elements in the aperture plane.

With ∆xap defined as a function of wavelength, the number of matrix elements used

to represent the aperture will vary according to wavelength. If the diameter of the

aperture is defined by Dap, the number of matrix elements used to define that aperture

will be

Nap(λ) =
Dap

∆xap(λ)
(3.5)

As will be demonstrated in a succeeding section on computing the optical MTF,

varying the number of elements representing the aperture by wavelength will produce

accurate MTFs that maintain spatial frequency registration in the image plane.

As a cautionary note about this method of determining spacings in the object,

aperture and image planes, tradeoffs exist between the parameters described above

which may prevent an accurate simulation or may cause an excessively long simulation

run-time. Using engagement scenario parameters that will be defined in the next chap-
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Table 3.1: Simulation sampling size considerations for different object plane
spacings.

∆xtrg[m] Nap(3.4µm) Nap(12.0µm)
5.0e-01 5721 1621
1.0e-01 1144 324
5.0e-02 572 162
1.0e-02 114 32
5.0e-03 57 16
1.0e-03 11 3
5.0e-04 6 2
1.0e-04 1 0

ter, tradeoffs exist between ∆xtrg, λ, and Nap. For example, letting strg = 15795m,

Dap = 0.6m, feff = 6m, and N = 1024, Table 3.1 shows the computed values for Nap

using different ∆xtrg and λ values.

From Table 3.1, larger values of ∆xtrg produce more aperture-diameter matrix

elements but at the expense of resolution in T (xtrg, ytrg). Conversely, smaller values

of ∆xtrg produce fewer aperture-diameter matrix elements even though resolution is

increased in T (xtrg, ytrg). Also, notice the difference in Nap between the two wave-

lengths; simulation runs over a very large waveband like 1 to 12 µm may not be

possible given the variability in Nap. For this thesis, ∆xtrg = 5 mm is chosen because

it provides sufficient resolution in T (xtrg, ytrg) while providing enough matrix elements

to effectively represent the aperture.

3.2 Modeling the Radiometry

Now that the object, aperture and image planes have been set up, defining

the radiometry for the engagement scenario can begin. The first step will be to

define all the radiometric assumptions used in the simulation. An explanation of the

temperature distribution, T (xtrg, ytrg), follows. Then, detailed explanations about all

the radiometric contributors and how they sum together to produce an irradiance on

the detector will be covered.
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3.2.1 Radiometric Assumptions. Two main assumptions are made in this

thesis that will aid in simplifying the radiometry. The first assumption is that the tar-

get’s surface is Lambertian. Rationale supporting that assumption is as follows. For

the engagement scenario explicitly stated by DETEC, the ABL, target, and observer

are coplanar to each other [4]. The slant range from the target to observer is 15.8

km, which can be broken into a target altitude of 13.9 km at a ground range of 7.5

km from the observer. This thesis is making an implicit assumption that the axis of

the missile is at zero degrees with respect to zenith. From this scenario configuration,

the observer is looking at the missile at an elevation angle of 61.6 degrees. Given this

observation angle, the assumption can be made that the target’s surface is sufficiently

diffuse such that it can be classified as Lambertian. This assumption is justified by

studying the bidirectional reflectance distribution function (BRDF) for two possible

surface treatments of the missile: bare aluminum and gloss white paint on aluminum.

For the bare aluminum, the change in emissivity is less than 1% across 90% of the

missile’s surface; while the gloss white paint experienced a change in emissivity of

less than 1% across 80% of the missile’s surface. A complete explanation of these two

claims is located in Appendix A.

For the second assumption, which is also based on the diffuse-surface assumption

discussed in Appendix A, this model assumes that the target’s emissivity can be

modeled using fractional specularity. Using theory developed in section 2.1.3.1 and

thesis work conducted by Bortle [3], the emissivity of the target can be expressed as:

ε(λ) = 1− ρtot(λ) (3.6)

where ρtot(λ) is the total reflectance of the target. However, under the diffuse/fractional-

specularity model, ρtot(λ) can be further divided into a specular reflectance and a

diffuse reflectance. All three quantities are related by [3:21]:

ρtot(λ) = ρspec(λ) + ρdiff (λ). (3.7)
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Therefore, the target’s emissivity that will be modeled in the simulation is

ε(λ) = 1− ρspec(λ)− ρdiff (λ) (3.8)

Seeing that equation (3.8) still has a dependence on wavelength, a further assumption

can be made to remove that dependence. Looking at reflectance measurements made

by Bortle for bare aluminum [3:46], as seen in Figure 3.1, the total reflectance remains

fairly constant over the waveband displayed. But looking at the specular and dif-

fuse reflectivities shows more variation in their respective reflectivities as wavelength

changes. The yellow line representing a 60-degree look angle from surface normal is

the data that best represents the engagement scenario presented in this thesis. One

waveband that is considered in this thesis is 3.4 - 4.2 µm; the variation in this band

is no more than 3% for both specular and diffuse reflectance. For Bortle’s 8-to-12-µm

data, the variation is no more than 5% for both reflectance cases. Given that this

reflectivity variation in both bands is rather small, this thesis will assume that the

specular and diffuse reflectivities remain constant as a function of wavelength.

3.2.2 Temperature Distribution. As stated in section 3.2.1, the temperature

distribution, T (xtrg, ytrg), serves as the main input to the IR camera simulation. The

only values represented in this matrix are the temperatures on the missile body as is

shown in Figure 3.2. The distribution was computed for this thesis by Paul Mattie,

a colleague also working on DIAT. Figure 3.2 represents how an assumed Gaussian

temperature spatial distribution in a plane normal to the surface normal at the center

of the Gaussian projects around the 1-m diameter cylindrical body that is viewed

from below at a 61.6-degree view angle by the observer. The Gaussian temperature

distribution assumption is made given that the beam irradiance distribution produced

by the HEL is also Gaussian. The maximum temperature assumption of 800 K, which

is just below the melting point of aluminum, was provided for this thesis by Dr.

William Bailey, an AFIT professor also working on DIAT, to be a reasonable value

for peak temperature. The σ for this Gaussian distribution is assumed to be 0.2 m.
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Figure 3.1: Reflectance data for the bare aluminum surface. [3:46].

Figure 3.2: HEL-induced missile body temperatures with peak temperature
at 800 K, missile body at 300 K, and the background at 0 K.

35



www.manaraa.com

All other missile body temperatures not induced by the HEL are assumed to be 300

K in order to account for any background- and aerodynamic-heating effects of the

missile body.

3.2.3 Self-Emission. To determine the irradiance incident upon the FPA

detector due to the temperature distribution, T (xtrg, ytrg), a general equation showing

how the detector irradiance is computed is required. Starting with equation (2.4),

L =
∂2φ

∂Atrg cos θtrg∂Ω
(3.9)

where the differential solid angle is expressed in terms of:

dΩ =
dAopt

s2
trg

cos θopt (3.10)

where strg is the range to the missile from the observer’s position, Aopt is the effective

area of the optical system’s aperture, and θopt is the angle between the optical system’s

optical axis and the line-of-sight from the observer to the missile. Substituting in the

differential solid angle and solving for the differential flux yields:

∂2φ = L cos θtrg
cos θopt

s2
trg

∂Atrg∂Aopt (3.11)

Since the radiant flux collected by the aperture equals the radiant flux incident on the

detector, the differential source area, ∂Atrg, can be expressed in terms of differential

area at the image plane of the optical system by taking advantage of the optical

system’s magnification, Mopt:

Aimg = Atrg (Mopt)
2 ⇒ Aimg = Atrg

(
simg

strg

)2

⇒ Atrg = Aimg

(
strg

simg

)2

∂Atrg = ∂Aimg

(
strg

simg

)2

. (3.12)
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Substituting this value back into equation (3.11) and simplifying, the irradiance pro-

duced by the target in the image plane can be expressed as an integration over the

optical aperture:

Ee,trg(ximg, yimg) =
∂φ

∂Aimg

=
Le (T (xtrg, ytrg)) cos θtrg cos θimg

s2
img

∫
Aopt

dAopt (3.13)

where θimg = θopt since they share the optical axis of the optical system. To provide

some generality to the IR camera simulation, the optical aperture can be configured

to include a central obscuration as would be the case for any catadioptric system. The

effective aperture in radiometric terms is simply the area of the aperture minus the

area of the obscuration. For the simulation, only circular apertures and obscurations

are considered:

Aeff = Aopt − Aobsc = π

(
Dopt

2

)2

− π

(
Dobsc

2

)2

=
π

4

(
D2

opt −D2
obsc

)
. (3.14)

Substituting equation (3.14) back into equation (3.13) will yield the general equation

for irradiance at the image plane:

Ee,img(ximg, yimg) =

(
Le (T (xtrg, ytrg)) cos θtrg cos θimg

s2
img

)
π

4

(
D2

opt −D2
obsc

)
. (3.15)

From what equation (3.15) describes, the irradiance at an image plane can be com-

puted by simply scaling the object’s radiance by the effective aperture area divided

by the square of the image distance. This fact will be applied to all other radiance

sources modeled in the simulation.

Since the simulation is based on spectral definitions, equation (3.15) must be

modified to compute spectral quantities. The spectral irradiance at the image plane

is:

Ee,img(λ, ximg, yimg) =

(
Le(λ, T (xtrg, ytrg)) cos θtrg cos θimg

s2
img

)
π

4

(
D2

opt −D2
obsc

)
.

(3.16)
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The only thing that needs to be further defined in equation (3.16) are the cosine terms.

The definition of these terms is solely based on the geometry between the target and

optical system. Since the optical system will be tracking the target, it will always

be on a line of sight with the target; therefore, θimg can be assumed to be equal to

zero thereby making cos θimg equal to one. Since the cos θtrg term accounts for the

projected surface area of the target, by projecting the detector pixel area onto the

target to determine the source area, the projected source area is already considered

and the cos θtrg can also be set to one. With the terms in equation (3.16) now defined,

the final representation of the target’s spectral irradiance at the image plane can be

determined by including the target’s emissivity and all attenuation effects due to the

optical system and atmosphere:

Ee,trg(λ, ximg, yimg) = τopt(λ)τfilter(λ)τatm(λ)

(
Aeff

s2
img

)
ε(λ)Le(λ, T (xtrg, ytrg)) (3.17)

where Aeff is defined by equation (3.14) and ε(λ) is defined by equation (3.8).

3.2.4 Path Radiance. The next contributor to the overall signal is the path

radiance. Spectrally, this emission comes from the absorptive regions of the atmo-

sphere that are located between the observer and target that re-radiate photons, and

it is highly dependent upon the engagement geometry which determines the amount

of atmosphere between the observer and target. The values used for spectral path

radiance are computed via MODTRAN, which will take into account the engagement

geometry and will be fully defined in the next chapter. Since this simulation mod-

els an imaging system looking at both a target and some background, two different

spectral path radiance contributions are modeled in the simulation to account for the

path between the observer and the target, and the path from the observer to infinity

to represent the background. These path radiances are shown in Figure 3.3. As is

shown in Figure 3.3, these two path radiances, as specified by the DETEC scenario

geometry, show very little difference between them, which makes sense because at

a 13.9-km altitude, the missile has the majority of the atmosphere between it and
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Figure 3.3: A comparison showing little difference between observer-to-
target and observer-to-∞ path radiances.

the observer. When working with MODTRAN, the spectral radiance values are ref-

erenced in wave number units [cm−1], which will require a conversion to wavelength

units. This conversion is achieved by:

Le,path(λ)

[
W

cm2 · sr · µm

]
= (10−4)ν2Le,path(ν)

[
W

cm2 · sr · cm−1

]
(3.18)

where ν is the wave number.

With spectral path radiance in usable form, this contribution can be added into

the simulation in terms of irradiance on the detector:

Ee,path(λ) = τopt(λ)τfilter(λ)

(
Le,path(λ)

s2
img

)[π
4

(
D2

opt −D2
obsc

)]
. (3.19)

3.2.5 Specular Background Reflection. Specular background reflection comes

about from the geometry that exists between the observer and the target; specifically,
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it represents a path radiance from the target to infinity that is reflected toward the

observer and scaled by the specular reflectivity, ρspec(λ), at an angle such that the

angle of incidence equals the angle of reflection (i.e., Snell’s Law) with the angles ref-

erenced to the missile’s surface normal. Figure 3.4 describes this scenario where the

angle of reflection is the observation angle, θobs and is equal to the angle of incidence,

θspec (i.e., the specular angle). To account for the specular contribution to reflected

radiance, MODTRAN is used again to compute the spectral path radiance that exists

between the target and infinity at the specular angle. In the case of this simulation,

that is the 61.6-degree observation angle. The method by which this contribution is

added into the total image irradiance is:

Ee,spec(λ) = τopt(λ)τfilter(λ)τatm(λ)

(
ρspec(λ)Le,spec(λ)

s2
img

)[π
4

(
D2

opt −D2
obsc

)]
(3.20)

where the specular background path radiance, Le,spec(λ), is scaled by the specular

reflectance, ρspec(λ).

Figure 3.4: Geometry defining the radiance contribution from the reflected
specular background.
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3.2.6 Diffuse Background Reflection. The diffuse background reflection

comes about from the 2π-sr hemispherical field of view seen by a differential area of

the missile body that is also being observed by the remote observer. The irradiance

from this hemisphere is reflected off of the missile body and back into this hemisphere

having been scaled by the diffuse reflectivity, ρdiff (λ). Since the target body is as-

sumed to be a Lambertian surface, this last statement is radiometrically summarized

by:

Le,diff (λ) =
ρdiff (λ)Ee,bkgdf (λ)

π
(3.21)

where Ee,bkgdf (λ) is the incident hemispheric spectral irradiance. The remote observer

will then only collect a portion of that reflected radiation, which will also be attenuated

by the atmosphere. As result, the spectral irradiance that is incident on the detector

will be

Ee,diff (λ) = τopt(λ)τfilter(λ)τatm(λ)

(
ρdiff (λ)Ee,bkgdf (λ)

πs2
img

)[π
4

(
D2

opt −D2
obsc

)]
(3.22)

However, the main difficulty in this computation is defining the spectral irra-

diance from the background, Ee,bkgdf (λ). When considering the spectral radiance for

this hemispherical source, the realization hits that it is composed of many different

spectral radiance profiles describing varying elevation angles and degrees of skyshine

and earthshine. To approximate this effect, the background hemisphere is divided

into five horizontal spectral radiance bands whose borders are defined by the eleva-

tion angles 22.5, 67.5, 112.5, and 157.5 degrees. This description is shown in Figure

3.5. These radiance bands correspond to path radiances computed from MODTRAN

to represent skyshine at 0◦ and 45◦ from zenith, horizon-shine at 90◦ from zenith, and

earthshine at 135◦ and 180◦ from zenith.

Since the target’s axis is assumed to be aligned with zenith, the radiance band

borders are normal to the target, which provides symmetry to this computation that

greatly simplifies it. Looking at Figure 3.5, it can be seen from the symmetry in the

figure that spectral radiance bands 1 and 5 have equal areas on the hemisphere as do
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Figure 3.5: Geometry defining the diffuse-background spectral-irradiance
computation.

spectral radiance bands 2 and 4. The hemispherical area of spectral radiance band

3 is divided in half by the 90-degree line. Since the spectral radiance in each band

is assumed constant across the whole band, the spectral irradiance from each band

is [16]:

Ee,band(λ) = Le,band(λ)

π∫
0

θ2∫
θ1

cos θd sin θddθddφ = πLe,band(λ)
(
sin2θ2 − sin2θ1

)
(3.23)

where θ1 and θ2 are the angles of adjacent band borders. In computing the integral in

equation (3.23), the solid angle of the hemisphere corresponding to bands 1 and 5 is

approximately 0.23 [sr]. The solid angle for bands 2 and 4 is approximately 1.11 [sr].

The solid angle for band 3 is approximately 0.46 [sr]. From these values, the diffuse
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background irradiance on the target from the entire hemisphere can be computed by:

Ee,bkgdf (λ) = 0.23Le,#1(λ)+1.11Le,#2(λ)+0.46Le,#3(λ)+1.11Le,#4(λ)+0.23Le,#5(λ).

(3.24)

The validity of this equation is verified by letting all five spectral radiance bands have

the same value such that the whole hemisphere has one spectral radiance value. The

resulting spectral irradiance value should equal the spectral radiance multiplied by π,

which is the expected result for a diffuse, Lambertian surface [5:47].

3.2.7 Total Spectral Irradiance at the Image Plane. With all the radiometric

sources defined and quantified, a statement can finally be made about the expected

spectral irradiance at the image plane of the optical system. The total spectral irra-

diance is simply the sum of equations (3.17), (3.19), (3.20), and (3.22):

Ee,tot(λ, ximg, yimg) = Ee,trg(λ, ximg, yimg)+Ee,spec(λ)+Ee,diff (λ)+Ee,path(λ). (3.25)

3.3 Modeling the Modulation Transfer Functions

With a radiometrically correct ideal image in the focal plane, the simulation

must now account for the phenomena that blurs this ideal image. The two chief blur-

ring agents are the optical system and atmospheric turbulence. Two other blurring

agents, namely the FPA pixel footprint and sampling footprint, which are inherent to

the detection system, also contribute. In order to apply all of these blurring effects,

they must be represented as MTFs. With the application of all these MTFs, the result

is a realistic image of the target recorded by the detector; therefore, this section will

present how these quantities are determined.

3.3.1 Optical MTF. The first MTF considered is the optical MTF for the

unaberrated optical system. For this thesis, the method of computation will be the

PSF method discussed in section 2.2.2.3. In the computation, the system parameters

that are used in defining the MTF include:
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• The size and shape of the optical system’s aperture.

• The size and shape of any central obscurations in the aperture.

• The effective focal length of the optical system.

• The wavelength of the optical radiation being propagated.

The method of computation is outlined in Goodman [10:142] for the computation

of complex apertures. For this thesis, a circular aperture with a circular central

obscuration is only considered. The first step is to spatially define this aperture,

P (xap, yap), by creating a matrix and letting it contain values zero through one. A

zero indicates no transmission, and one indicates total transmission through any given

region. With the aperture defined, compute the Fourier transform of P (xap, yap) and

square it to yield an intensity PSF. Then, perform the Fourier transform on the

intensity PSF and take its modulus to yield an unnormalized MTF. The optical MTF

used in the simulation requires the MTF to be normalized, so using the value of the

unnormalized MTF at zero spatial frequency as the normalizing term will yield the

desired result. This description is summarized by:

MTFUn−Norm(fX,img, fY,img) =
∣∣FF {|FF {P (xap, yap)}|2

}∣∣ (3.26)

MTFopt(fX,img, fY,img) =
MTFUn−Norm(fX,img, fY,img)

MTFUn−Norm(0, 0)
(3.27)

As a MATLAB implementation note, the defined aperture within the matrix must

not fill more than half of the matrix size in order to prevent aliasing in the Fourier

transform computation. Example results of this calculation is shown in Figure 3.6.

3.3.1.1 Analyzing the Optical MTF. Some qualitative analysis is re-

quired to understand the impacts that the optical MTF has on the overall optical

system. Looking at Figure 3.6 shows how the optical MTF varies with wavelength

for an optical system defined with the following parameters: aperture diameter = 0.6

m, central obscuration = 0.2 m, and F/# = 10. The exactness of these MTFs can

be confirmed by looking at the plotted spatial cutoff frequencies and comparing them
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Figure 3.6: Optical MTFs for various IR wavelengths. Optic parameters: a
0.6 m circular aperture with 0.2 m circular obscuration, F/# = 10.

to equation (2.29). The first observation concerns how the cutoff spatial frequency

varies with wavelength. The practical implication of cutoff spatial frequency is that

it is the point at which the image contrast goes to zero. Shorter wavelengths have

higher cutoff frequencies than longer wavelengths. The main conclusion that comes

from Figure 3.6 is that, for an object emitting IR radiation and being imaged, the

irradiance differences in finer spatial features on the object will be detected when

those features emit at shorter wavelengths as opposed to longer ones. At longer wave-

lengths, the irradiance of those finer features will produce an average irradiance value

that creates a blurred effect in the image. As a note, the flattened portion in the

MTFs at approximately 0.3 is due to the central obscuration.

3.3.2 Detector MTF. When attempting to quantify the effects that an FPA

pixel has on a scene, one must realize that there is an inherent spatial averaging of

scene irradiance that takes places due to the detector pixel’s finite size [2:31]. This
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averaging takes place due to the pixel’s inability to distinguish between two different

sources that are within its instantaneous field of view (IFOV). To perform this spatial

averaging, the scene irradiance must be convolved with the pixel footprint which can

be modeled as a square aperture of size, w2
det. As a result, this square aperture can

be described by its Fourier transform to provide an MTF.

MTFdet =

∣∣∣∣sin(πfXwdet)

πfXwdet

∣∣∣∣ ∣∣∣∣sin(πfY wdet)

πfY wdet

∣∣∣∣ (3.28)

This MTF experiences a zero at fX , fY = 1
wdet

[2:34], which is due to one line pair of

spatial frequency aligning just right to produce a zero modulation depth. This effect

is demonstrated in Figure 3.7. Figure 3.8 shows one dimension of the detector MTF.

Figure 3.7: At the detector spatial cutoff frequency fX = 1/w, the modula-
tion depth is zero. [2:34].

For this thesis, the physical dimension of the pixel is 25 µm. This choice was based
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on a mercury cadmium telluride (HgCdTe or MCT) FPA datasheet specification from

DRS Infrared Technologies [7]. This value is in the mid-range of pixel sizes seen on

different datasheets, which vary from 19 - 60 µm with the majority being between 20

- 30 µm [8, 11,14,22].

Figure 3.8: MTF of a 25-µm FPA pixel.

3.3.3 Sampling MTF. The sampling MTF attempts to account for the FPA

sampling the irradiance scene. A successful accounting proves to be more difficult

since sampled-imaging systems are shift variant [2:41]. This fact is easily observed

in Figure 3.9 which shows that the measured irradiance value can vary depending

upon how it is sampled. A perfect alignment on the FPA detectors will yield a

higher measurement than if the irradiance is straddled and being measured by two

sets of detectors. In order to invoke shift invariance onto this problem, the sampling

MTF can be defined in similar terms as the detector MTF by defining a sampling

footprint. This footprint is defined by the sampling interval, xsamp, which equals the

distance between pixel centers. The irradiance scene can then be spatially averaged
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Figure 3.9: Demonstration of the shift variance of a sampled, image-forming
system. [2:41].

by a rectangular footprint of size xsamp × ysamp, which results in a similar MTF as

described by equation (3.28) [2:42]:

MTFsamp =

∣∣∣∣sin(πfXxsamp)

πfXxsamp

∣∣∣∣ ∣∣∣∣sin(πfY ysamp)

πfXysamp

∣∣∣∣ . (3.29)

For this thesis, the modeled FPA will have a 100% fill factor, which makes xsamp =

ysamp = wdet. As a result, the sampling MTF equals the detector MTF.

3.3.4 Atmospheric MTF. The atmospheric MTF attempts to account for

turbulence effects due to the atmosphere which randomly refracts optical radiation as

it propagates through the atmosphere. One fundamental parameter used in creating

the atmospheric MTF that should be discussed here is the atmospheric coherence
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diameter, r0. r0 describes the effective aperture of the atmosphere under which a

beam of light retains coherence. The practical impact that this value has on spatial

frequency in this simulation is that this parameter determines the limits of resolution

in the optical system. Because of this parameter, any aperture size greater than r0

will not yield greater resolution in the image. In this simulation, the atmospheric

MTF is not explicitly computed; Becky Beauchamp, a DIAT team member working

atmospheric issues, provided long-term atmospheric MTFs for many different wave-

lengths with an r0 = 0.25 m. As a result, the atmospheric MTF will be the limiting

MTF in the simulation, given that the simulated optic diameter is 0.6 m; this will be

shown in the next section.

3.3.5 System MTF. With the MTFs defined for each component in the

optical system, the overall system MTF can be computed by multiplying the optical,

detector, sampling, and atmospheric MTFs together. Figure 3.10 shows the system

MTF and should be compared to Figures 3.6 and 3.8 to see how it relates to the other

MTFs.

To apply the imaging effects of the optical system onto the ideal spectral ir-

radiance that is incident on the detector, the following mathematical operation is

required:

Ee,img(λ, ximg, yimg) = F−1F−1 {MTFsys(fX,img, fY,img)×FF {Ee,tot(λ, ximg, yimg)}} .

(3.30)

3.4 Modeling the Detector Response

At this stage of the simulation, all optical radiation sources have contributed

to produce a blurred irradiance due to the optical system onto the FPA. All that is

left is for the FPA to absorb the incident photons and produce a measurable current.

This section will describe how the IR camera simulation takes the incident irradiance
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Figure 3.10: Overall system MTF which is composed of the optical, detector,
sampling, atmospheric MTFs.

image and models the response from the photovoltaic detector, which could be made

from either InSb or MCT.

3.4.1 Computing the Detector Signal. Up to this point in the simulation,

all the radiometric values have been expressed in terms of radiant units. Since a

photovoltaic detector is a photon detector, the radiant radiometric values need to

be converted to photon quantities. The first step in this conversion is to express

Ee,img(ximg, yimg, λ) in terms of radiant spectral flux. At this stage, the simulation is

still working with the spectral irradiance image, which has yet to be integrated across

an FPA detector pixel, so using the MATLAB representation discussed in section 3.1.2

and equation (3.2) and in section 3.2.7 and equation (3.25) to represent the physical

spacing between adjacent image values, the radiant spectral flux of the image is then:

φe,img(ximg, yimg, λ) = Ee,img(ximg, yimg, λ)∆x2
img (3.31)
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where ∆x2
img represents the area in the image plane that Ee,img(xi,img, yj,img, λ) is

a constant value. The conversion to photon flux is achieved by the application of

equation (2.1):

φq,img(ximg, yimg, λ) =
λ

hc
φe,img(ximg, yimg, λ). (3.32)

With the image expressed in terms of spectral photon flux, the signal can now

be integrated over a physical detector size, w2
det, in order to represent what is collected

by an actual FPA pixel. This integration is achieved in MATLAB by first defining

pixel boundaries across the image by normalizing the image’s physical scales, ximg

and yimg, by wdet, which is seen in Figure 3.11 These boundaries are represented by

whole numbers in the array. The next step is to sum up all the photon spectral flux

Figure 3.11: Photon flux distribution across the MCT FPA showing pixel
boundaries in the 8.5-to-12-µm waveband, 0.125 msec integration time. Sim-
ulated source reflectivities: ρspec = 0.2, ρdiff = 0.3.

image values, φq,img(ximg, yimg, λ), that lie in between adjacent whole numbers in the

x- and y-directions across the entire image. The result of this operation is the FPA

image, which is shown in Figure 3.12 in terms of total photon flux on the FPA pixel.
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This spectral photon flux is then used to determine the amount of spectral current

Figure 3.12: Spatially-integrated photon flux incident on each MCT FPA
pixel in the 8.5-to-12-µm waveband, 0.125 msec integration time. Simulated
source reflectivities: ρspec = 0.2, ρdiff = 0.3.

generated in the detector, which is determined by the photocurrent equation, (2.33).

Since the computed detector currents are spectral quantities, the whole simulation

must be repeated for every wavelength specified in the waveband, from computing

new spectral irradiances at the next wavelength and applying the next spectral MTF,

to integrating this new image to an FPA image. For each iteration of the simulation,

the FPA spectral current will be summed with all the previous iterations, which will

yield a total current over a waveband. Mathematically, this spectral integration is

represented discretely by:

iFPA =

j−1∑
m=1

im,FPA(λ)∆λm where ∆λm = λm+1 − λm (3.33)

where im,FPA(λ) is the spectral current.
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With a total current defined, a signal, quantified by the number of electrons

generated in the detector, can be determined by simply dividing the current by the

charge of an electron, q, and multiplying it by the integration time, τ .

SFPA =
iFPAτ

q
(3.34)

This signal is now the focus of this thesis because it will be used to show how detectable

the target will be with respect to the detection system’s noises discussed in section

3.4.3, but more importantly, it provides the comparison signal by which temperature

estimates on the target body will be made as will be discussed in Chapter IV. The

detectability will be based on the computation of the SNR.

SNR =
SFPA

Ntotal

(3.35)

where Ntotal is the total number of detection system noise electrons as defined in

section 3.4.3.

3.4.2 Detector Materials. The choice of detector materials to be mod-

eled was based on the desire to explore a wide range of wavelengths. Looking at

the possibilities, the best choices were InSb and MCT, since they are both common

commercially-used detector materials; plus, between the two, they cover a wide range

of wavelengths. InSb is suited to the 3-to-5-µm band; while, MCT covers 8 to 12 µm.

Since MCT is a very configurable material depending upon the Hg-Cd mole fraction,

the specific type of MCT used for this simulation is Hg0.2Cd0.8Te.

Based on the discussion in section 2.2.3.2, the two most important factors in

determining a detector’s suitability are its cutoff wavelength, λc, and quantum effi-

ciency, η. For this simulation, these detector materials are modeled as being cooled

to 77 K, which produces λc,InSb = 5.5 µm [5:94] and λc,MCT = 13.78 µm [19:682].

As for the quantum efficiency, defining it as a spectral quantity was preferred for the

sake of model fidelity. The original goal was to find complex indices of refraction for
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both materials and use equations (2.35) and (2.36) to calculate the quantum efficien-

cies. Such values are available for MCT from Polk at 80 K [19:682]. These values

were then interpolated to the proper wavelength values to make them useful for this

simulation. The quantum efficiency for MCT is shown in Figure 3.13. Overall, the

Figure 3.13: Quantum efficiency of Hg0.2Cd0.8Te at 80 K with a measured
cutoff wavelength, λc, of 13.78 µm.

spectral quantum efficiency is comparable to the 65% specified by Dereniak [5:94]. As

for InSb, no extinction coefficient, k, data could be found at 77K. However, the real

index-of-refraction data from Palik [18:495] could be used. The only other way found

to define InSb’s absorption coefficient spectrally was through [5:90]:

a = a0

√
hν − Eg + a′0 for hν > Eg (3.36)

a = a′0 exp

(
hν − Eg

kt

)
for hν < Eg (3.37)

where a0 = 1.9 × 104 cm−1 and a′0 = 800 cm−1 for InSb. The quantum efficiency

computed for InSb is shown in Figure 3.14. It should be noted that these quantum
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Figure 3.14: Quantum efficiency of InSb at 77 K with a cutoff wavelength,
λc, of 5.5 µm.

efficiencies are only for the bare material. No anti-reflective coatings, which would

increase the quantum efficiency, are assumed to be applied.

3.4.3 Noise Sources. In the continued effort to attain the required fidelity in

this simulation, consideration of noise sources in the detector and associated ROIC are

required. The noises are caused by random fluctuations in charge within the detector

and ROIC, which may be perceived as part of the true signal. As a result, the total

noise of the system determines the lower limit of a detector’s sensitivity. To be able

to quantify inherently random noises sources, their variances must be determined.

Dereniak provides a justification through the use of the power spectrum density that

the variances can be quantified into root-mean-squared (rms) values [5:154]. As a

result of this definition, independent noise sources must be added in quadrature to

get the total detector noise. For this thesis, the following detector noises sources

were considered: photon (Nphoton), dark current (Ndark), and Johnson (NJohnson),

while the following read noises were considered: transfer inefficiency (Ntrsfr), fat zero
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(NFatZero), kTC (NkTC), and preamplifier (Npreamp). From these noise sources, the

total detection system noise in the simulation is defined as:

Ntotal =
√

N2
photon + N2

dark + N2
Johnson + N2

trsfr + N2
FatZero + N2

kTC + N2
preamp (3.38)

Descriptions of these noises are in the following sections. As a note, these noises are

computed and quantified in units of number of electrons [e−]. Also, noise expressions

are usually expressed in terms of the noise-equivalent bandwidth, but since this thesis

focuses on integration time as an analysis parameter, all the noise terms will use the

definition of noise-equivalent bandwidth as defined by equation (2.39) so that they

are in terms of integration time.

3.4.3.1 Photon Noise. Photon noise is a result of photons from the

source arriving at the detector at random times. Since arrival times can be described

as Poisson processes, the noise value can be expressed as the square root of the mean

number of photons. This noise will manifest itself as a shot noise because these

photons will generate a photocurrent that will flow across the photovoltaic depletion

region [5:175]. The photon noise can be expressed as:

Nphoton =
√

ηEq.detAdτ [e−]. (3.39)

3.4.3.2 Dark Current Noise. Another shot noise source in photovoltaic

detectors is dark current. This current represents the current flowing in the detector

when no optical radiation is incident upon it. The amount of dark current in a detector

is controlled by how the semiconductor is doped and how the photovoltaic device is

biased.

To estimate the dark current, Janesick [12:622] provides a datasheet-friendly

method of computation. Using ambient-temperature testing information from a de-
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tector datasheet, the following constant is computed:

C =
DFMAd

qT 1.5
ambe

−Eg,amb/(2kBTamb)
(3.40)

where DFM is a dark current density figure of merit at some ambient-testing temper-

ature, Tamb, Ad is the area of the detector pixel, and Eg,amb is the bandgap energy of

the detector material at Tamb. This value is then substituted into [12:622]:

idark = CT 1.5
opre

−Eg,opr/(2kTopr) (3.41)

where Topr is the operating temperature of the detector material and Eg,opr is the

bandgap energy of the detector material at Topr. In this form, the units of the dark

current are [e−/sec]. At which, the shot noise from the dark current is [12:626]:

Ndark =
√

idarkτ [e−] (3.42)

3.4.3.3 Johnson Noise. Johnson noise is due to fluctuations caused by

thermal motion of charge carriers in a resistive element [5:168]. This noise is computed

with

NJohnson =

√
2kBToprτ

q2Rdet

[e−] (3.43)

where Rdet is the resistance of the detector. Resistance-area (RA) products, when

multiplied by the detector area, can be used to compute Rdet. The RA value chosen

for InSb at an operating temperature of 77 K is 107 Ω−cm2 [5:308]. For Hg0.2Cd0.8Te,

the RA value chosen, based on Figure 3.15, is 15 Ω− cm2.

3.4.3.4 Transfer Inefficiency Noise. In charge-coupled device (CCD)

technology, the transfer inefficiency noise characterizes the amount of charge randomly

removed from a signal as it leaves a potential well or the amount of charge randomly

added to a signal as it enters a potential well. Charge transfer efficiency (CTE)

is a parameter used to quantify how well a CCD can transfer the charge from one
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Figure 3.15: Plots of RA products for various β-valued Hg1−βCdβTe detec-
tors. Note, the Hg0.2Cd0.8Te detector variant corresponds to darkened rectan-
gle symbol. [5:323].

potential well to the next. A common value for CTE, which is used in the simulation,

is 0.99999 [12:387]. This noise can be quantified by [12:656]:

Ntrsfr =
√

2(1− CTE)NpixelSpixel [e−] (3.44)

where Npixel is the number of detector pixels in one dimension and Spixel is the signal

in (e−) in a specific pixel. The value chosen for Npixel is 256 and is based on various

IR FPA datasheets used in military applications [14,22].

3.4.3.5 Fat Zero Noise. Fat zero noise results from an electrical fat

zero randomly injecting charge into a potential well. Electrical fat zeros are designed

into a CCD array to fill electron-trapping sites in the potential well and allow for more
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efficient charge transfer [12:654]. The following equation quantifies this noise [12:655]:

NFatZero =

√
kBToprCI

q2
[e−] (3.45)

where CI is the input capacitance to an input metal-oxide semiconductor field-effect

transistor (MOSFET) on the preamplifier in the ROIC. Janesick lists a value of 0.01

pF as a typical order of magnitude for CI [12:515].

3.4.3.6 kTC Noise. kTC noise is associated with the reset circuit

on the CCD preamplifier. It results from thermal noise generated by the channel

resistance of the reset MOSFET. This noise is quantified by [12:538]:

NkTC =

√
kBToprCS

q2
[e−] (3.46)

where CS is the output capacitance to an output MOSFET on the preamplifier on the

ROIC. Janesick lists a value of 0.1 pF as a typical order of magnitude for CS [12:538].

3.4.3.7 Preamplifier Noise. The preamplifier noise is associated with

the MOSFET transconductance of the preamplifier. The preamplifer noise is defined

by [17]:

Npreamp =
CS

q

√
4kBTopr

3gmτ
(3.47)

where gm is the MOSFET transconductance. Janesick lists a value of 5 × 10−4 f as

a typical order of magnitude for gm [12:497].

3.5 Summary

With the IR camera simulation completely developed, it now has the capability

to start answering questions for the DIAT program. These questions will be addressed

in the next chapter as the IR camera simulation is used as an analysis tool to identify

the critical parameters in measuring irradiance from the ABL.
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IV. Temperature and SNR Analyses

With the IR camera simulation fully developed, it can now be employed to provide

initial answers that will aid in the development of DIAT. This chapter details the

analysis that was conducted to initially look at how the SNR of the target changes with

respect to four variables: the target’s specular and diffuse reflectivities, integration

time, and the choice of waveband in which to measure the irradiance. However, this

analysis took on greater significance with the realization that using the generated data,

a temperature estimate may be produced. Therefore, this chapter will document the

scenario and model inputs from which the results came, display and discuss the results

of the SNR study, and document the initial method of estimating temperature and

the results that it generated.

4.1 Analysis Scenario and Simulation Parameter Definitions

For the initial analysis scenario that was defined by DETEC, a missile is launched

from Vandenberg AFB California. At a specific instant of time, the ABL is lasing

the missile, which is at an altitude of 13.9 km with its axis pointing at zenith, and

an observer, who is located on the ocean at a ground range of 7.5 km from the mis-

sile, is looking at the laser-induced hot spot on the missile at a 61.6-degree angle

from horizontal. The ABL, missile, and observer share the same vertical plane. The

distance between the target and missile is a slant range of 15.8 km. From this in-

formation, parameters used in the simulation like the background spectral radiances

and atmospheric transmission can be estimated by PLEXUS/MODTRAN.

To create these transmission and radiance values, PLEXUS requires specific

geometry, time, and location information. So for this analysis, inputs into PLEXUS

were defined as:

• Date: July 14, 2007

• Time: Noon, local time

• Aerosol environment: Maritime
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• Clear day with a visibility of 23 km and no significant weather in the past 24

hours

• Observer is looking at the missile with an azimuth of 40 degrees from due north

• Observer altitude: 0 km (sea level)

• Slant range: 15.8 km

• Observation angle: 28.2 degrees from zenith

From these data inputs, PLEXUS generated the atmospheric transmission func-

tion shown in Figure 4.1. This figure shows that there is substantial atmospheric

Figure 4.1: Atmospheric transmission function defined for a 15.8-km slant
range at Vandenberg AFB on July 14, 2007 at 12:00 local time..

absorption taking place given the above parameters. The best wavebands to simulate

will have the highest atmospheric transmission values. As a result of this data, the

3.4-4.2-µm waveband, which has an average atmospheric transmission of 64%, is the

best choice for the InSb FPA. The best waveband choice for the MCT FPA is 8.5-12
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µm, and its average atmospheric transmission is 54%. Due to these waveband choices,

the spectral filter transmission functions for each detector type will be set to their

respective wavebands and have a 95% transmittance; any wavelengths outside each

waveband will have zero transmittance.

Since the IR simulation produces a detector image of collected energy from the

missile body and the surrounding background, background spectral radiance contri-

butions must be added to account for path radiance emissions between the observer

and the target, and from the observer to infinity, which is seen on both sides of the

missile body. These contributions are shown in Figure 4.2. As shown in Figure 4.2,

Figure 4.2: Observer-to-target and observer-to-infinity spectral path radi-
ances used to provide background sources.

very little difference exists between the two spectral path radiances. This lack of dif-

ference is due to the target’s 13.9-km altitude and the fact that most of atmosphere

is between the observer and target. The only difference occurs in the 8.5-10.1-µm
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waveband, which according to Lt Col Steven Fiorino, an AFIT professor also working

on DIAT, is a spectral path radiance contribution from ozone.

The next spectral radiance input is the specular reflectance source. This source

requires slightly different PLEXUS input parameters because the target becomes the

“observer”. Specifically, the IR simulation must account for background spectral

radiance contributions that are incident onto the target at its current position, so

changes in the observer’s altitude, azimuth angle, observation angle, and slant range

are required in PLEXUS. For the specular reflectance case, the observer’s parameters

become:

• Altitude: 13.9 km

• Azimuth angle: -140 degrees from due north

• Observation angle: 28.4 degrees from zenith (specular angle)

• Slant range: Infinity

The resulting specular reflectance spectral radiance input, which will be scaled by

ρspec(λ), is shown in Figure 4.3. Looking at the wavebands used in the simulation, Fig-

ure 4.3 shows an almost insignificant contribution made in the 3.4-4.2-µm waveband

and a large spectral radiance contribution from ozone in the 8.5-12-µm waveband.

The last spectral-source input that must be addressed is the diffuse reflectance

source. As discussed in section 3.2.6, this input comes from the spectral radiances

observed at angles 0, 45, 90, 135 and 180 degrees from zenith at the target’s position.

Figure 4.4 shows how each of these spectral radiances compare with each other. The

spectral radiances at zero (blue line) and 45 (green line) degrees, which represent

skyshine, are very similar to Figure 4.3 in that there is an almost insignificant contri-

bution in the 3.4-4.2-µm waveband and a large spectral radiance contribution, which

peaks at approximately 7.5×10−5[W/(cm2 ·sr ·µm] in each angular region from ozone

in the 8.5-12-µm waveband. The spectral radiance at 90 degrees (black line), which

also represents skyshine, has a similar spectral profile as the 0- and 45-degree profiles
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Figure 4.3: Spectral radiance incident onto target body seen at the specular
angle, 28.4 degrees from zenith, with a path from the target to infinity.

Figure 4.4: Spectral radiances incident onto target body used to compute
the diffuse reflected background as seen from angles 0, 45, 90, 135, and 180
degrees from zenith, with a path from the target to infinity.
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with the main difference being the 90-degree spectral radiance contribution is larger

than the other two. This result makes sense because the longest path through the

atmosphere occurs at this 90-degree angle, which looks out to the horizon. The spec-

tral radiances at 135 (cyan line) and 180 (red line) degrees are significantly different

than the others because this spectral radiances represent earthshine. These earthshine

components are the main contributors to the diffuse reflected background. The 3.4-

4.2-µm waveband experiences a peak spectral radiance contribution of approximately

6×10−5[W/(cm2·sr·µm] in both angular regions; the 8.5-12-µm waveband experiences

a large peak spectral radiance contribution of approximately 9×10−4[W/(cm2 ·sr ·µm]

in both angular regions. To get a usable quantity for the simulation, each of these

spectral radiances are inputs to equation (3.24), which produces an irradiance incident

on the target body:

Ee,bkgdf (λ) = 0.23Le,0(λ) + 1.11Le,45(λ) + 0.46Le,90(λ) + 1.11Le,135(λ) + 0.23Le,180(λ).

(4.1)

The result from equation (4.1) is shown in Figure 4.5 and is used in computing the

diffuse-reflected component in the simulation.

With the above scenario-dependent spectral inputs defined for this analysis,

all the other IR camera simulation parameters can be defined, too. These input

parameters are summarized in Table 4.1.

Table 4.1: IR camera simulation inputs with their corre-
sponding units, symbols, and default values.

Parameter Spectral Default
Name Symbol Units Quantity? Value(s)
Engagement Scenario

Target distance strg m No 15794

Target Parameters

Temperature distribution T (xtrg, ytrg) K No 300 - 800
on target
Target sample size ∆xtrg m No 5× 10−3

Specular reflectivity ρspec(λ) unitless Yes 0 - 1

continued on the next page
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Table 4.1: continued

Parameter Spectral Default
Name Symbol Units Quantity? Value(s)
Diffuse reflectivity ρdiff (λ) unitless Yes 0 - 1
Number of sample N unitless No 1024
elements in T (xtrg, ytrg)
Radius of missile rtrg m No 0.5

Atmospheric Parameters

Observer-to-target τatm(λ) unitless Yes 0 - 1
atmospheric transmission
Observer-to-target Le,path,trg(λ) W

m2·sr·m Yes Scenario
spectral path radiance dependent
Observer-to-infinity Le,path,inf (λ) W

m2·sr·m Yes Scenario
spectral path radiance dependent
Specular angle Le,spec(λ) W

m2·sr·m Yes Scenario
spectral path radiance dependent
Diffuse background Ee,diff (λ) W

m2·m Yes Scenario
spectral irradiance dependent
Atmospheric MTFs MTFatm unitless Yes 0 - 1

Optical System Parameters

Waveband λ m Yes 3.4− 4.2× 10−6

8.5− 12× 10−6

Aperture diameter Dopt m No 0.6
Obscuration diameter Dobsc m No 0.2
Focal length f m No 6
Optical transmission τopt(λ) unitless Yes 0 - 1
Spectral filter τfilter(λ) unitless Yes 0 - 0.95
transmission

Detector Parameters
Operating temperature Topr K No 77
Dark current density
figure of merit at DFM

A
m2 No 5× 10−7

ambient temperature
Ambient environment Tamb K No 300
temperature
Cutoff wavelength at λc,amb m No InSb: 7× 10−6

ambient temperature MCT: 7.293× 10−6

Resistance-area RA Ω−m2 No InSb: 1× 103

product MCT: 1.5× 10−3

Cutoff wavelength λc m No InSb: 5.5× 10−6

continued on the next page
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Table 4.1: continued

Parameter Spectral Default
Name Symbol Units Quantity? Value(s)

MCT: 13.75× 10−6

Index of refraction n unitless Yes Material dependent
Extinction coefficient k unitless Yes Material dependent
Detector alignment No “det center” or

“edge centr”
FPA pixel size wdet m No 25× 10−6

Detector material lx m No 10× 10−6

thickness
Integration time τ sec No 0.125× 10−3

1× 10−3

FPA array size Ndet unitless No 256
Charge transfer CTE unitless No 0.99999
efficiency
Gate capacitance CI F No 1× 10−14

of input MOSFET
Gate capacitance CS F No 1× 10−13

of output MOSFET
Transconductance gm mhos No 5× 10−4

of output MOSFET

The outputs generated by the IR camera simulation are summarized in Table
4.2.

4.2 SNR Data

With all the simulation parameters defined, a parametric study that investigates

the expected SNR as four simulation parameters are varied can begin. These four

parameters are the target’s specular and diffuse reflectivities, integration time, and

the choice of waveband. The waveband choices (3.4-4.2 µm and 8.5-12 µm) were

rationalized in terms atmospheric transmission in section 4.1. The chosen values for

FPA integration time are 1 msec and 0.125 msec. The former is a common integration

time for an FPA based on the several FPA datasheets [8, 11, 22]. The latter is based

on the minimum integration time for AFIT’s Santa Barbara InSb FPA [23:10]. The

most varied parameters in this study are the specular and diffuse reflectivities, which
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Figure 4.5: Diffuse spectral irradiance incident on the missile body com-
puted from the 0-, 45-, 90-, 135-, and 180-degree spectral radiance contribu-
tions.

will range from zero to one and will be changed in steps of 0.1. These reflectivities are

coupled and governed by the relation in equation (3.8) which describes the emissivity

of the target. The overall objective of this SNR study is to determine how detectable

the HEL-induced thermal emission is based on these four parameters and to identify

trends in the results.

For this SNR study, 264 simulation runs were required to account for all com-

binations of the four test variables. The main simulation output used for this study

is the variable “SNR” from Table 4.2. This variable presents an image of the target

as it would be seen by an FPA with values representing the SNR for each pixel in

the FPA. Examples of the SNR variable are shown in Figures 4.6, which shows the

expected SNR for the InSb FPA in the 3.4-4.2 µm waveband, and 4.7, which shows
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Table 4.2: IR camera simulation outputs with their corresponding
units.

Parameter Name Units
Spectrally Integrated Images

Radiance from target W
m2·sr

Irradiance on FPA W
m2

Radiant flux on FPA W

Photon flux on FPA photon
sec

Detector Images (Spatially Integrated)

Number of electrons e−

Irradiance W
m2

Radiant flux W

Photon flux photon
sec

Photo-generated current A
SNR unitless

Noise Factors
Photon e−

Johnson e−

Dark Current e−

Transfer e−

Fat zero e−

kTC e−

Preamplifier e−

the expected SNR for the MCT FPA in the 8.5-12 µm waveband. In this SNR study,

three pixels in Figures 4.6 and 4.7 are of interest:

1. Pixel (129,129) represents the SNR at the hottest part of the HEL-induced

temperature distribution. Data associated with this pixel are in Tables 4.3, 4.4,

4.5, and 4.6.

2. Pixel (92,129) represents the SNR at a point along the missile axis not experi-

encing HEL-induced heating. Data associated with this pixel are in Tables 4.7,

4.8, 4.9, and 4.10.

3. Pixel (92,92) represents the SNR of the background located off of the missile.

Data associated with this pixel are in Tables 4.11, 4.12, 4.13, and 4.14.
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Figure 4.6: Computed SNR from a 256×256 InSb FPA in the 3.4-4.2 µm
waveband: Integration Time: 0.125 msec, ρspec = 0.2, ρdiff = 0.5. Optic:
Dopt = 0.6 m, F# = 10.

Figure 4.7: Computed SNR from a 256×256 MCT FPA in the 8.5-12 µm
waveband: Integration Time: 0.125 msec, ρspec = 0.2, ρdiff = 0.5. Optic:
Dopt = 0.6 m, F# = 10.

70



www.manaraa.com

Table 4.3: Computed SNR for hottest pixel (129,129)
using a 256×256 InSb FPA in the 3.4-4.2 µm waveband,
Integration Time: 1 msec. Optic: Dopt = 0.6 m, F# =
10.

ρspec

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 3557 3375 3182 2977 2756 2516 2250 1949 1592 1126 67
0.1 3375 3182 2977 2756 2516 2250 1949 1592 1126 70
0.2 3182 2977 2756 2516 2251 1949 1592 1126 72
0.3 2977 2756 2516 2251 1949 1592 1127 74
0.4 2756 2516 2251 1949 1592 1127 77

ρdiff 0.5 2516 2251 1950 1592 1127 79
0.6 2251 1950 1592 1127 81
0.7 1950 1593 1127 83
0.8 1593 1128 85
0.9 1128 87
1.0 90

Table 4.4: Computed SNR for hottest pixel (129,129)
using a 256×256 InSb FPA in the 3.4-4.2 µm waveband,
Integration Time: 0.125 msec. Optic: Dopt = 0.6 m, F#
= 10.

ρspec

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 1256 1192 1123 1051 972 887 793 686 559 393 12
0.1 1192 1123 1051 972 887 793 686 559 393 13
0.2 1123 1051 972 887 793 686 559 393 14
0.3 1051 972 887 793 686 559 393 14
0.4 972 887 793 686 559 394 15

ρdiff 0.5 887 793 686 559 394 15
0.6 793 686 560 394 16
0.7 686 560 394 17
0.8 560 394 17
0.9 394 18
1.0 18
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Table 4.5: Computed SNR for hottest pixel (129,129)
using a 256×256 MCT FPA in the 8.5-12 µm waveband,
Integration Time: 1 msec. Optic: Dopt = 0.6 m, F# =
10.

ρspec

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 2101 1944 1782 1617 1447 1272 1092 906 715 518 314
0.1 1952 1790 1625 1455 1280 1101 916 725 528 324
0.2 1798 1633 1463 1289 1110 925 734 538 334
0.3 1641 1472 1298 1119 934 744 548 344
0.4 1480 1306 1128 943 753 557 355

ρdiff 0.5 1315 1137 953 763 567 365
0.6 1145 962 772 577 375
0.7 971 782 587 385
0.8 791 596 395
0.9 606 405
1.0 415

Table 4.6: Computed SNR for hottest pixel (129,129)
using a 256×256 MCT FPA in the 8.5-12 µm waveband,
Integration Time: 0.125 msec. Optic: Dopt = 0.6 m, F#
= 10.

ρspec

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 743 687 630 571 511 449 386 320 253 183 111
0.1 690 633 574 514 453 389 324 256 187 115
0.2 636 577 517 456 392 327 260 190 118
0.3 580 520 459 395 330 263 194 122
0.4 523 462 399 333 266 197 125

ρdiff 0.5 465 402 337 270 200 129
0.6 405 340 273 204 132
0.7 343 276 207 136
0.8 280 211 140
0.9 214 143
1.0 147
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Table 4.7: Computed SNR for missile body pixel (92,129)
using a 256×256 InSb FPA in the 3.4-4.2 µm waveband,
Integration Time: 1 msec. Optic: Dopt = 0.6 m, F# =
10.

ρspec

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 153 147 140 133 125 117 109 100 90 79 67
0.1 148 141 134 127 119 110 102 92 81 70
0.2 142 135 128 120 112 103 94 84 72
0.3 137 130 122 114 105 96 86 74
0.4 131 123 115 107 98 88 77

ρdiff 0.5 125 117 109 100 90 79
0.6 119 110 101 92 81
0.7 112 103 94 83
0.8 105 96 85
0.9 97 87
1.0 90

Table 4.8: Computed SNR for missile body pixel (92,129)
using a 256×256 InSb FPA in the 3.4-4.2 µm waveband,
Integration Time: 0.125 msec. Optic: Dopt = 0.6 m, F#
= 10.

ρspec

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 38 36 34 31 29 27 24 21 18 15 12
0.1 37 34 32 30 27 24 22 19 16 13
0.2 35 32 30 28 25 22 20 17 14
0.3 33 30 28 25 23 20 17 14
0.4 31 29 26 23 21 18 15

ρdiff 0.5 29 26 24 21 18 15
0.6 27 24 22 19 16
0.7 25 22 19 17
0.8 23 20 17
0.9 21 18
1.0 18
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Table 4.9: Computed SNR for missile body pixel (92,129)
using a 256×256 MCT FPA in the 8.5-12 µm waveband,
Integration Time: 1 msec. Optic: Dopt = 0.6 m, F# =
10.

ρspec

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 615 586 556 526 497 467 436 406 375 345 314
0.1 596 566 536 506 476 446 416 386 355 324
0.2 576 546 516 486 456 426 396 365 334
0.3 556 526 496 466 436 406 375 344
0.4 536 506 476 446 416 385 355

ρdiff 0.5 516 486 456 426 395 365
0.6 496 466 436 405 375
0.7 476 446 415 385
0.8 456 425 395
0.9 435 405
1.0 415

Table 4.10: Computed SNR for missile body pixel
(92,129) using a 256×256 MCT FPA in the 8.5-12 µm
waveband, Integration Time: 0.125 msec. Optic: Dopt =
0.6 m, F# = 10.

ρspec

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 217 207 197 186 175 165 154 143 133 122 111
0.1 210 200 190 179 168 158 147 136 125 115
0.2 203 193 182 172 161 151 140 129 118
0.3 196 186 175 165 154 143 133 122
0.4 189 179 168 158 147 136 125

ρdiff 0.5 182 172 161 150 140 129
0.6 175 165 154 143 132
0.7 168 158 147 136
0.8 161 150 140
0.9 154 143
1.0 147
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Table 4.11: Computed SNR for background pixel (92,92)
using a 256×256 InSb FPA in the 3.4-4.2 µm waveband,
Integration Time: 1 msec. Optic: Dopt = 0.6 m, F# =
10.

ρspec

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 73 73 72 72 71 70 70 69 69 68 67
0.1 73 72 72 71 70 70 69 69 68 67
0.2 72 72 71 70 70 69 69 68 67
0.3 72 71 70 70 69 69 68 67
0.4 71 70 70 69 69 68 67

ρdiff 0.5 70 70 69 69 68 67
0.6 70 69 69 68 67
0.7 69 69 68 67
0.8 69 68 67
0.9 68 67
1.0 67

Table 4.12: Computed SNR for background pixel (92,92)
using a 256×256 InSb FPA in the 3.4-4.2 µm waveband,
Integration Time: 0.125 msec. Optic: Dopt = 0.6 m, F#
= 10.

ρspec

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 14 14 14 14 13 13 13 13 13 13 12
0.1 14 14 14 13 13 13 13 13 13 12
0.2 14 14 13 13 13 13 13 13 12
0.3 14 13 13 13 13 13 13 12
0.4 13 13 13 13 13 13 12

ρdiff 0.5 13 13 13 13 13 12
0.6 13 13 13 13 12
0.7 13 13 13 13
0.8 13 13 13
0.9 13 13
1.0 13
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Table 4.13: Computed SNR for background pixel (92,92)
using a 256×256 MCT FPA in the 8.5-12 µm waveband,
Integration Time: 1 msec. Optic: Dopt = 0.6 m, F# =
10.

ρspec

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 321 320 320 319 318 317 317 316 315 315 314
0.1 320 320 319 318 318 317 316 316 315 314
0.2 320 319 318 318 317 316 316 315 314
0.3 319 318 318 317 317 316 315 315
0.4 319 318 317 317 316 315 315

ρdiff 0.5 318 317 317 316 315 315
0.6 318 317 316 316 315
0.7 317 316 316 315
0.8 317 316 315
0.9 316 315
1.0 315

Table 4.14: Computed SNR for background pixel (92,92)
using a 256×256 MCT FPA in the 8.5-12 µm waveband,
Integration Time: 0.125 msec. Optic: Dopt = 0.6 m, F#
= 10.

ρspec

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 113 113 113 113 112 112 112 112 112 111 111
0.1 113 113 113 112 112 112 112 112 111 111
0.2 113 113 113 112 112 112 112 111 111
0.3 113 113 112 112 112 112 111 111
0.4 113 112 112 112 112 111 111

ρdiff 0.5 112 112 112 112 112 111
0.6 112 112 112 112 111
0.7 112 112 112 111
0.8 112 112 111
0.9 112 111
1.0 112

4.2.1 SNR Discussion. Starting this SNR discussion with the hot spot

SNR data (Tables 4.3, 4.4, 4.5 and 4.6), the IR camera simulation predicts that the

measured irradiance is strongly affected by the target’s reflectivity, yet the irradiance is
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very observable. To quantify this statement, the simulated SNR at the hottest part of

the HEL-induced thermal emission in the 3.4-to-4.2-µm with a 0.125-msec integration

time produced values ranging from 1256, for the case of a true blackbody, to 394 when

the total reflectivity was very high at 0.9. In the 8.5-to-12-µm waveband, similar

trends were also experienced with a 743 SNR at zero reflectivity and approximately

200 SNR at 0.9 total reflectivity. When the FPA integration time increased to 1 msec,

the SNRs increase significantly for the same spatial location on the target. For the 3.4-

to-4.2-µm waveband at zero reflectivity, the SNR is 3557, while at a total reflectivity

of 0.9, the SNR is 1127. The 8.5-to-12-µm waveband produces an SNR of 2101 at

zero reflectivity and averaged 560 for the 0.9 total reflectivity. These observations

are supported by Wien’s Displacement Law (equation (2.15)), which computes the

peak exitant wavelength associated with the peak hot-spot temperature. For an 800-

K blackbody temperature, the peak wavelength result is 3.62 µm, which is within

the 3.4-to-4.2-µm waveband; consequently, the spectral radiance in the 8.5-to-12-µm

waveband will be lower.

When the total reflectivity was broken into its constituent specular and dif-

fuse components, the SNR varied only slightly in the 3.4-to-4.2-µm waveband with

a ∆SNR of 1 at 0.9 total reflectivity. However, the 8.5-to-12-µm waveband is more

susceptible to specular and diffuse reflectivity changes. At a total reflectivity of 0.9,

the SNR varied from 518 to 606 for a 1-msec integration time. The reason for the vari-

ability is due to the larger background radiance seen in the 8.5-to-12-µm waveband of

Tables 4.13 and 4.14. Since the diffusely reflected component has a higher spectral ra-

diance than the specularly reflected component, slight increases in the computed SNR

occur at constant total reflectance as the diffuse reflectivity becomes more predomi-

nant. These subtle results are meeting expectations which indicate the simulation is

correct in predicting fundamental trends.

As a note, the presented SNR values are computed with respect to the low noise

level at the detector, which explains why the reported SNRs are so large. To get a

more realistic perspective in relation to the measured background, the 3.4-to-4.2-µm
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waveband hot-spot SNR is above the background SNR, in Tables 4.11 and 4.12, by

a factor of 16 in the case of 0.9 total reflectivity. The 8.5-to-12-µm waveband hot-

spot SNR is above the background SNR by a factor of 1.9 in the case of 0.9 total

reflectivity. Because of these observations, the 3.4-to-4.2-µm waveband is the better

choice for measuring irradiances. Further study is required to see if the falloff between

ρtot = 0.9 and ρtot = 1 is gradual or abrupt.

Since the simulated hot-spot signals are considerably larger than the detector

noise, it would be interesting to see what noise sources are the largest contributors.

Table 4.15 provides a summary of all the noise contributions considered in this thesis

for both detector materials and integration times. These results are in terms of rms

electron counts and came from detecting a target whose reflectivity is ρspec = 0.2 and

ρdiff = 0.3. For the InSb FPA, the largest noise source is, by far, photon noise. For

the MCT FPA, significant noise contributions are from photon and Johnson noises.

Table 4.15: Noise contributions in the InSb and MCT
FPAs for integration times of 0.125 msec and 1 msec
while observing a target with reflectivities of ρspec = 0.2
and ρdiff = 0.3.

InSb MCT
0.125 msec 1 msec 0.125 msec 1 msec

Photon 892e− 2523e− 1035e− 2919e−

Johnson 3e− 7e− 2207e− 5875e−

Dark Current 2.4× 10−4e− 5.7× 10−4e− 0.03e− 0.09e−

Transfer 64e− 181e− 74e− 209e−

Fat zero 20e− 20e− 20e− 20e−

kTC 64e− 64e− 64e− 64e−

Preamplifier 0.1e− 0.3e− 0.1e− 0.3e−

Total noise 897e− 2531 2232e− 6553e−

The only SNR results that seem to have some inconsistencies are the background

SNR values (Tables 4.11, 4.12, 4.13 and 4.14). As the simulation is currently set up,

the entire background is represented by a single path radiance profile. Equation

(3.19) does not scale by any reflective or emissive terms. So from a purely radiomet-
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ric point of view, these background SNR quantities should remain constant no matter

the what diffuse and specular reflectivities are assigned to the target. Further obser-

vations show that the SNR values monotonically increase as the target becomes less

reflective. The question arises, “What is causing this increase in SNR?” A possible

answer was mentioned in section 4.3.2 concerning the differences between the ideal

radiometric estimation case and the estimation case using simulation-produced data.

The main difference between the two, besides additional radiometric sources, is the

optical system; specifically, the diffraction effects inherent to optical systems which

produce the Airy disk (Figure 2.4) and the PSF. As Williams and Becklund [24:45]

specify, the area underneath a PSF is always one:

∞∫
−∞

∞∫
−∞

PSF (x, y)dxdy = 1 (4.2)

which means that when a PSF is reduced in height, it must become wider. Causes

for wider PSFs, as expressed by the angular size of the Airy disk:

θA =
2.44λ

Dopt

(4.3)

are small apertures and longer wavelengths. The consequence of a wider PSF is a

narrower MTF by way of equation (2.30); a narrow MTF reduces the modulation

depth more quickly at smaller spatial frequencies. The question might arise as to

how this effect changes the SNR values. Since wider PSFs spread out more energy

across the image plane, a source emitting more energy will provide the PSF with more

energy to distribute. This logic matches the trends in the background SNR tables;

more emissive targets had higher background SNRs than less emissive targets.

4.3 Temperature Estimation Via Least Square Optimization

In the process of exercising the capabilities in the IR camera simulation to

generate SNRs in the different wavebands, an important realization occurred. By

79



www.manaraa.com

having two integrated wavebands observing the same spatial region on the target with

some temperature distribution, T (xtrg, ytrg), as described in section 3.1.2, a blackbody

with an effective temperature for that region, Teff , can be defined. Recalling equations

(3.17), (3.19), (3.20), (3.22), (3.25), (3.31) and (3.32), and the discussion in section

3.4.1, a reverse algorithm can be developed using the flux, φq,img, collected at each

pixel, and effectively rewriting equations (3.17), (3.20) and (3.22) as:

E ′
e,trg(λ, ximg, yimg) = τopt(λ)τfilter(λ)τatm(λ)

(
Aeff

s2
img

)
ε′Le(λ, Teff ) (4.4)

E ′
e,spec(λ) = τopt(λ)τfilter(λ)τatm(λ)

(
ρ′spec(λ)Le,spec(λ)

s2
img

)[π
4

(
D2

opt −D2
obsc

)]
(4.5)

E ′
e,diff (λ) = τopt(λ)τfilter(λ)τatm(λ)

(
ρ′diff (λ)Ee,bkgdf (λ)

πs2
img

)[π
4

(
D2

opt −D2
obsc

)]
(4.6)

respectively, where ρ′spec, ρ′diff , and Teff are unknown quantities to by found by least-

squares optimization of the best fit of these functions to the φq,img value for each

waveband. Again, note that ε′ = 1− ρ′spec− ρ′diff . Gauging the desires of DETEC for

DIAT, since ABL testers may not have a priori knowledge of the missile’s emissivity,

this initial reverse algorithm, which determines ε′ along with Teff , is an appropriate

starting point.

4.3.1 Ideal Radiometric Case. To test this algorithm, irradiances from two

different wavebands were computed using equation (3.17) at a defined, spatially con-

stant temperature and scaled by a defined emissivity, where ε is of the form of equation

(3.8). The values tested were Ttest = 567 K and ε = 0.74. Using equation (4.4), which

has the same form as equation (3.17), a least-squares optimization was performed

that let the target’s temperature and emissivity values be swept independently across

a range of values. As a result, the exact values of the temperature and emissivity

were extracted: Teff = 567 K and ε′ = 0.74; consequently, this algorithm works for

the ideal radiometric case. Two figures demonstrate where the exact values were met.

Figure 4.8 shows the space over which temperature and emissivity were swept. The

80



www.manaraa.com

location where the two white lines meet indicates where the least-square value is lo-

cated. Figure 4.9 shows where Teff and ε′ were computed in terms of temperature

and emissivity independently.

4.3.2 Estimation Using Simulation Data. To apply the same least-squares

optimization on actual data from the IR camera simulation is a bit more difficult

than the previous case. The measured irradiances include contributions from addi-

tional atmospheric sources, the measured irradiance itself comes from many different

temperatures that are encompassed by a detector’s IFOV, and the signal irradiance

is attenuated spectrally by the atmospheric transmission. Another factor that makes

the least-squares optimization more difficult for this case is the diffracting effects of

the optical system. To perform the least-squares optimization on the IR camera sim-

ulation data, three variables that should be swept for each pixel in order to account

for the primary contributions include the specular and diffuse reflectivities and the

effective temperature.

So as to not get too complicated initially, there might be a reasonable assump-

tion that may allow the sweeping of just two variables: temperature and total re-

flectivity, which is related to emissivity by equation (3.6). Looking at Figures 4.10

and 4.11, which show the spectral radiance contributions for all modeled sources in

both wavebands, the specular background contribution (cyan line) is quite insignifi-

cant compared to the other contributions; it ranges from 10 to 1000 times below the

magnitude of the diffuse background and path radiance contribution. With the 300-K

blackbody (blue line) and the diffuse background being fairly close to each other in

magnitude, any change in the diffuse reflectivity should be negated by the opposite

response in emissivity of the 300-K blackbody. For higher temperatures, like at 800

K, the self-emission is so large that any change in the diffuse reflectivity will produce

only slight changes in the total radiance, which can be seen in the SNR data. For

these reasons, use of total reflectivity is justified.
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Figure 4.8: Image of estimated variable space showing where the least square
is located: Teff = 567 K and ε′ = 0.74.

Figure 4.9: Top: How the estimation residual varied with temperature.
Bottom: How the estimation residual varied with emissivity.
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Figure 4.10: Spectral radiance contributions in the 3.4-to-4.2-µm waveband;
atmospheric transmission is included..

Figure 4.11: Spectral radiance contributions in the 8.5-to-12-µm waveband;
atmospheric transmission is included..
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Figure 4.12: Estimated temperature profiles for various specular and diffuse
reflectivities along the axis of the missile, 0.125 msec integration time.

Figure 4.13: Estimated total reflectance profiles for various specular and
diffuse reflectivities along the axis of the missile, 0.125 msec integration time.
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The first attempt at estimating the effective temperature and total reflectance

along the missile axis is shown in Figures 4.12 and 4.13, respectively. Looking at

Figure 4.12, something obviously is amiss with the estimating algorithm since it shows

a 100- to 200-K overshoot at the peak average temperature of 780 K. Away from the

HEL-induced hot spot, where the missile body was set to 300 K, the estimates were

improved, but they still showed 20-50 K overshoot. The reflectivity estimates in

Figure 4.13 are nowhere near their expected values, especially, for the cases where the

total reflectance is zero (red line) and 0.5 (green line). The zero-reflectivity case varies

between 0.45 and 0.85. Given that the estimating algorithm gave exact results for the

ideal case, and the same algorithm produced such bad results used the simulated data,

some quantity has not been fully accounted for between these two cases. So instead

of continuing to generate tables of suspect temperature estimates, the remainder of

this analysis will be spent discussing why the temperature estimates deviated from

the expected value.

4.3.3 Temperature Estimation Discussion. As discussed in section 4.2.1, the

optical system may the reason why the proposed estimation algorithm works poorly.

Further analysis is required to determine whether this argument applies to the results

of the estimation algorithm. To simplify this analysis, the use of apparent temperature

will enable this study to more easily pick out how the least-squares estimation comes

to its conclusions. Since temperature is the only variable, the estimate can be done

for each band, as well as using both bands. Also, each estimate will incorporate one

of the following assumptions in its estimator:

1. The estimator is modeled strictly as an ideal blackbody (i.e., ε is one).

2. The estimator is modeled as case 1 with the additional assumption that the

spectral atmospheric transmission function is known.

3. The estimator is modeled as case 2 with the additional assumption that the

spectral path radiance from the observer to infinity at the observation angle is

a known quantity.
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For case 1, using an ideal Planckian as the estimating function in the least-

square estimation algorithm results in Figure 4.14. This figure shows the result of the

two-band estimation (black, dashed line) on a target whose emissivity is one (i.e., ρspec

is zero and ρdiff is zero), which allows this analysis to be independent of emissivity.

The figure shows a significant underestimate in temperature, with a peak apparent

temperature of 405 K; however, this result makes perfect sense. Even though this

estimation used the simulated, ideal blackbody data, specific radiometric factors like

atmospheric transmission and path radiance were not factored into the estimator. As

a consequence, the apparent temperature does not have to be large in order to create a

Planckian function estimator whose two integrated wavebands equal the results from

the simulation. The end result is an underestimation of the temperature. Looking

Figure 4.14: Apparent temperatures using an ideal blackbody estimator for
the 3.4-4.2-µm band, 8.5-12-µm, and the two-band cases. Simulated source
reflectivities: ρspec = 0.0, ρdiff = 0.0. Integration time: 0.125 msec.

at the individual bands, the peak apparent temperature estimate in the 3.4-4.2-µm

band (red line) is a better estimate at 615 K, while, the peak apparent-temperature
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estimate in the 8.5-12-µm band (blue line) is at 395 K. These results makes sense again

given the radiometric factors listed above. The atmospheric transmission, shown in

Figure 4.1, demonstrates that the transmission is better in the 3.4-4.2-µm band than

the 8.5-12-µm band. Also, the spectral path radiance, shown in Figure 4.2, shows

that background is much larger in the 8.5-12-µm band than the 3.4-4.2-µm band.

The net effect is an underestimation of apparent temperature in both bands, but the

3.4-4.2-µm band provides the better estimate than the 8.5-12-µm band. The only part

of the apparent-temperature profiles that do not make sense occurs in the 3.4-4.2-µm-

band estimate at the points on the missile body furthest away from the HEL-induced

hot spot. This profile shows an overestimate of 305 K. From the above radiometric

reasoning, the expected result should be an underestimate. The optical system may

be contributing to this result, but all the other estimating cases must be addressed

first before any definitive statement are made.

In case 2, the next step is to add an assumption that the state of atmospheric

transmission is a known quantity. Multiplying the ideal Planckian estimator function

by the spectral atmospheric transmission results in the estimation profiles shown in

Figure 4.15. The peak apparent temperatures in the two-band, 3.4-4.2-µm band and

8.5-12-µm band cases are 505 K, 665 K, and 475 K, respectively. These estimates are

better than in case 1, and their temperature shifts make sense even though the overall

estimates are still off. By including the spectral atmospheric transmission, energy is

removed from the vacuum-transmission estimator, which requires a higher apparent

temperature. For the missile body temperatures, an interesting phenomenon has

occurred; the single band estimates have switched from Figure 4.14, where the 8.5-12-

µm band has a larger apparent temperature estimate than the 3.4-4.2-µm band. This

observation can be explained. Since atmospheric absorption and the path radiance

are so much greater in the 8.5-12-µm band than the 3.4-4.2-µm band, the 8.5-12-µm-

band estimator produces a higher apparent temperature than the 3.4-4.2-µm-band

estimator. However, this result is counterintuitive when entire temperature profile is

considered. The expectation would be both single-band curves maintain their same
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Figure 4.15: Apparent temperatures using an ideal blackbody estimator
scaled by the atmospheric transmission function for the 3.4-4.2-µm band, 8.5-
12-µm, and the two-band cases. Simulated source reflectivities: ρspec = 0.0,
ρdiff = 0.0. Integration time: 0.125 msec.

relative positions; they would simply be shifted higher due to the addition of the

atmospheric transmission function in the estimator. This result provides some initial

evidence that the optical system is redistributing energy onto the FPA, but there is

still one more factor that needs to considered: the path radiance.

For the last case, the remaining assumption that can be made is that the path

radiance is a known quantity. Conceivably, this quantity could be measured by having

the camera look at a region of sky where the missile will fly through the camera’s

FOV, but in order for the measurement to be valid, the camera can no longer move as

this measurement only applies to that specific part of the atmosphere. An uncertainty

analysis with respect to the possible variance in path radiance may be in order here.

When the path radiance of this “measurement” is added to the case 2 blackbody

estimator, the apparent-temperature estimation results for the two-band and each
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Figure 4.16: Apparent temperatures using an ideal blackbody estimator
scaled by the atmospheric transmission function and incorporating path radi-
ance for the 3.4-4.2-µm band, 8.5-12-µm, and the two-band cases. Simulated
source reflectivities: ρspec = 0.0, ρdiff = 0.0. Integration time: 0.125 msec.

single band case is shown in Figure 4.16. The peak apparent temperatures in the two-

band, 3.4-4.2-µm band and 8.5-12-µm band cases changed slightly from case 2 and

are 490 K, 660 K, and 455 K, respectively. The missile body apparent temperatures

returned to similar values like in case 1, and no “switching” of the missile body

temperatures were observed like in case 2. As a result, the differences between the

peak and missile body temperatures are at their greatest extent. Out of the three cases

analyzed, case 3 represents the best case to estimate temperature because it takes into

account the two radiometric effects, besides self-emission, that affect the measured

signal. Since this analysis uses the zero-reflectivity simulation data, specular- and

diffuse-reflected radiances shown in Figures 4.10 and 4.11 are not factors affecting

these estimations. From this case, the main question to be asked is, “What is causing

these apparent temperature estimates to be significantly underestimated?”
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Figure 4.17: Photon flux incident on the InSb FPA in the 3.4-to-4.2-µm
waveband, 0.125-msec integration time. Simulated source reflectivities: ρspec =
0.2, ρdiff = 0.3.

Incorporating the discussion from section 4.2.1 that the PSF is an energy dis-

tribution device with the analysis results from the above three cases, a definitive

conclusion can be made about the temperature estimates: the PSF is the cause of the

inaccurate temperature estimates. To create an image like what is shown in Figures

3.12 and 4.17, requires by equation (2.31) that the optical system’s PSF be convolved

with the incoming scene irradiance. In that process, energy is redistributed across

the whole image. This effect can be observed in Figures 4.14, 4.15 and 4.16. For

the case of the 8.5-12-µm band apparent temperature, part of the irradiance that

comes from spatial regions associated with the missile body is distributed to spatial

regions associated with the background, which would explain why the missile body

apparent temperature for the blackbody target in Figure 4.16 is underestimated. The

same observation applies to the spatial region associated with HEL-induced hot spot,

which is by far the most significant energy source in the image; the PSF will redis-
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tribute a larger portion of its energy across the whole image as was indicated by the

background SNR results. With the larger energy portion removed, the apparent tem-

perature estimates of the hottest pixel have the largest errors of any measurement on

any given temperature profile as seen in Figures 4.14, 4.15 and 4.16. Given that the

estimates for the 8.5-12-µm band were worse than the 3.4-4.2-µm band, there is an

inherent wavelength dependence in the amount of error in the apparent temperature

estimates. As seen in Figure 4.16, 3.4-4.2-µm band estimates are better than the

8.5-12-µm band estimates simply because the PSF in the 3.4-4.2-µm band narrower.

This assertion makes intuitive sense when equation (4.3) is considered. The angular

size of the PSF is smaller for shorter wavelengths than for longer wavelengths.

To improve the temperature estimates, as approached in this thesis, the PSF

should be designed such that it is as narrow as possible. This effect can be achieved

by incorporating adaptive optic systems which will reduce the widening effects of the

atmosphere on the PSF. To demonstrate how much an effect the modeled atmosphere

had on the generated data, see Figures 4.18, 4.19 and 4.20. The only way that

the least-squares temperature estimating algorithm will provide accurate estimates

is if all factors associated with generating the imaging data are precisely accounted.

Assuming the PSF is optimized as much as possible, the temperature estimates will

still be off given that the PSF can never become a delta function (i.e., an infinitely

large aperture). The only way to fully counteract the effects of the PSF would be to

deconvolve it with the collected image. This action would then retrieve the perfect

image, which would provide more suitable conditions for the least-squares method to

work.

Because Figures 4.12 and 4.13 were the starting points of this entire discus-

sion, additional discussion is required to explain their results since the PSF is now

known to be the main source of uncertainty in the temperature estimation. The ques-

tion that must be answered in this discussion is, “Why were the temperature and

reflectivity estimates so inaccurate in this two-band, two-dimensional least-squares

optimization?” The object of the least-squares optimization is to find the tempera-
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Figure 4.18: Number of electrons generated (atmospheric MTF included)
in the MCT FPA in the 8.5-to-12-µm waveband, 0.125-msec integration time.
Simulated source reflectivites: ρspec = 0.2, ρdiff = 0.3.

Figure 4.19: Number of electrons generated (atmospheric MTF not in-
cluded) in the MCT FPA in the 8.5-to-12-µm waveband, 0.125 msec integration
time. Simulated source reflectivities: ρspec = 0.2, ρdiff = 0.3.

92



www.manaraa.com

Figure 4.20: Ideal image of temperature distribution which shows the aver-
age temperature within each projected pixel of the FPA.

ture and reflectivity values that best match the two-band simulated values using a

single Planckian estimating function. Focusing on the zero reflectivity case (red line),

Figure 4.12 shows a consistent overestimate over the entire temperature profile, and

Figure 4.13 shows an significant overestimate of the target’s reflectivity. From the

above apparent-temperature discussions, the PSFs consistently cause the apparent

temperature estimates to underestimate, and the estimates was worse at longer wave-

lengths. Since the irradiance of the hottest pixel was smaller, due to the PSF, than

in the ideal case, the least-squares optimization was selecting higher reflectivities and

temperature estimates in order to minimize the sum of the squares of the differences.

4.4 Summary

In this chapter, the IR camera simulation went from just being a model to a

tool that can provide technical answers to aid DIAT development. The SNR data

generated in this chapter can be used to gauge the expected signal from the HEL-
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induced hotspot. The attempt at estimating temperature will give DIAT developers

insight as to what factors need to be considered for that estimate. These impacts will

be discussed more thoroughly in the next chapter.
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V. Conclusions and Reccommendations

With the analysis complete, some definitive conclusions can be presented that will

help guide DIAT’s development. In Chapter I, this thesis asked a series of funda-

mental questions about the scenario of verifying the ABL’s performance when it lases

targets; those questions now have answers. Along the way in finding answers to those

questions, many other questions arose, which provided other avenues of research.

Those different avenues will be discussed, as well.

5.1 Major Contributions

The IR camera simulation provided a major contribution to the development of

DIAT by answering the following questions:

1. How will the target’s reflectivity affect the measured irradiance?

2. What kind of SNRs can be expected for different target reflectivity values?

3. What waveband is the best choice for the irradiance measurement?

4. Can the laser hot-spot temperatures be estimated?

5. What factors contribute to the estimated temperature’s uncertainty?

Questions 1, 2, and 3 need to be addressed jointly because their answers are very

coupled. The results of the SNR analysis showed that the target’s reflectivity has a

significant impact on the measured irradiance, which was indicated by the variation in

simulated SNR values for different reflectivities. The data showed that the SNRs are

very dependent on the choice of waveband, with the 3.4-4.2-µm waveband providing

the best SNRs from very emissive to very reflective targets. The 8.5-12-µm waveband

provided strong SNRs, as well, but the background radiance contributions are much

more significant in that waveband than the 3.4-4.2-µm waveband, which may cause

detection problems for reflective targets. Since this thesis looked at a temperature

distribution that had a maximum temperature of 800 K, the best observing waveband

is 3.4-4.2 µm.
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For Question 4, the answer is, “Not by the estimator used in this thesis!” While

this thesis was able to estimate temperature and emissivity for an ideal radiometric

case, the temperature estimates became very poor when the least-squares algorithm

started to use IR-camera-simulation data. The main difference between these two

cases is the incorporation of the optical system and its abilities to redistribute the

collected energy over the focal plane. More research is required in order to find ways

that correct for the optical system’s effects on truly remote temperature measurement

with imaging devices. Which leads to the answer for Question 5, the greatest factor

contributing to the estimated temperature uncertainty using the method applied here

is the optical system’s PSF.

5.2 Recommendations for Future Research

Given the level of generality that has been designed into the IR camera simula-

tion, the amount of future research possibilities is quite immense. Of first importance,

a future research project should be conducted in order to validate the IR camera simu-

lation. An excellent experimental setup would involve the use of an IR scene projector.

The advantage of such a setup would be not only to test and validate the radiometric

equations, but also to test the ability of the imaging side of the simulation by gen-

erating scenes with varying spatial frequencies. An experiment of this type should

be able to quantify how much error is induced by an optical system in radiometric

measurements.

A second area of continued research should be more extensive parametric studies

for the DIAT program. Given the amount of parameters that can be varied for the

IR camera simulation, an intensive sensitivity study should begin to identify which

parameters in the model are the most susceptible to changes. A study that would

be of interest is to identify which other wavebands are the good choices to provide

a temperature estimate. Seeing the amount of background radiance that existed

in the 8.5-to-12-µm waveband in this thesis provides impetus to explore how well

temperature estimation might be made if the background was not so strong. Based
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on the spectra seen in the initial estimation attempt, two wavebands in the 3-to-5-µm

region may be good choices because the background radiances were so low. All these

efforts would certainly aid in the development of a temperature-estimating algorithm.

A third area of continued research, which would again aid the DIAT program,

would be to investigate the possibilities, requirements, and methods for deconvolv-

ing PSFs from images. Because this factor was the single greatest uncertainty in

estimating temperature in this thesis, understanding how to counteract its effects on

irradiance measurements would be very beneficial.

Another potential area of future study would be to combine AFIT’s Large Com-

mercial Aircraft Infrared (LCAIR) signature modeling software with the IR camera

simulation. The benefits of such a simulation would be to expand LCAIR’s capa-

bilities by taking into account sensor performance of a modeled sensor system like a

tracking pod or a missile seeker, and to incorporate target geometries other than just

a single cylinder into the DIAT simulation.

One final area of future research that the IR camera simulation enables is the

study of other photon detector materials. Since this simulation uses complex index-of-

refraction data to quantify detector performance, measurements of potential detector

material’s complex index of refraction could be conducted. Based on that data, their

performance as a detector could then be evaluated for different scenarios and optical

radiation sources.

5.3 Conclusion

In developing this IR camera simulation, a useful tool has been created to aid

the development of DIAT and any other projects that require extensive use of IR

imaging systems. The tool is a very general model which attempts to encapsulate

the critical parameters that define such systems in order to provide realistic results.

It is because of this model that this thesis was able to identify the PSF’s effects on
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irradiance measurements and its impacts in remotely estimating temperature from a

target.
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Appendix A. Lambertian Source/Fractional Specularity Justification

In Chapter III, section 3.2.1, two assumptions were made concerning the missile body:

1. It could be modeled as a Lambertian radiator.

2. Its emissivity can be modeled using a fractional specularity model.

While these assumptions certainly simplify the radiometry of the problem, they were

not chosen at the expense of simulation fidelity. For the engagement scenario specified

in this thesis, these assumptions are valid. This appendix provides the necessary

justifications and reasoning to validate these assumptions.

The first step toward validation is to begin with the Sandford-Robertson re-

flectance model [21]. To start, the directional emissivity provides a method for defin-

ing the directional and spectral dependence of emissivity. It is defined by [21:18]:

ε(λ, θ) = ε(λ)
g(b, θ)

G(b)
(A.1)

where g(b, θ) is the angular distribution, which is a function of elevation angle, θ

and grazing angle reflectivity, b and G(b) is a normalization constant for the angular

distribution. Expressions for g(b, θ) and G(b) are defined by [21:18]:

g(b, θ) =
1

1 + b2 tan2 θ
(A.2)

G(b) =
1

1− b2

[
1− b2 log(b2)

1− b2

]
(A.3)

The quantity b, which ranges from zero to one, is a empirical constant determined

from surface reflectance data. g(b, θ) takes emissivity to zero as θ approaches 90

degrees.

To show how these two quantities interact, Figure A.1 plots equation (A.1) to

show how the directional emissivity changes with reflectance angle, where θ = θr

and varies from zero to π
2
, and b, which varies from zero to one. As is shown, the

directional emissivity can vary significantly depending upon θr and b. The important
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Figure A.1: Directional emissivity for an ideal blackbody (i.e., ε(λ) = 1)
with θr varying from zero to π

2
and b varying from zero to one.

trend to notice is how directional emissivity varies over θr for a given b. Observe that

as b decreases from one, the directional emissivity becomes more constant across the

θr-range with increasingly quick transitions from near the hemispherical emissivity,

ε(λ), to zero. For the case that b equals zero, the directional emissivity remains

constant for the entire range of θr, but right at 90 degrees, the directional emissivity

is zero. When this special case occurs, the surface can be defined as a Lambertian

radiator; consequently, it will emit equally in all directions.

From the discussion in section 2.1.3.1 about Kirchhoff’s law, the total directional

reflectivity, which includes specular and diffuse reflectivities, is defined by [21:19]:

fr(λ, θi, φi) = ρspec(λ, θi) + ρdiff (λ, θi) = 1− ε(λ, θi) (A.4)

where θi is the incident elevation angle and φi is the incident azimuthal angle, which

is usually set to zero as a reference. Figure A.2 shows how the total reflectivity varies

with the incoming radiation’s incident angle for three values of b.

100



www.manaraa.com

Figure A.2: Angular dependence of the total reflectance for three values of
b [21:19].

Focusing on the diffuse component, Sandford and Robertson state that the dif-

fuse reflectivity is assumed to be an average property of the surface that is dependent

on microscopic surface roughness and θi [21:19]. To consider how the diffuse reflec-

tivity varies with θi and b, Sandford and Robertson’s diffuse BRDF is used [21:20]:

fd(e, b, ρdiff (λ); θi, φi; θr, φr) =
g(θr)ρdiff (λ)g(θi)

π [G(b)2]
(A.5)

where the amount of diffusely scattered energy is defined by ρdiff (λ)g(θi), and the

angular distribution of that radiation is determined by g(θr). For a case when b ≈ 0

(i.e., Lambertian), Figure A.3 shows that diffuse reflectivity is fairly uniform over a

wide range of incident and reflected angles, but when the incident angles are grazing,

the diffuse reflectivity decreases while the specular component increases. To clarify

what this quantity is in Figure A.3, the question should be asked: Is the diffuse BRDF

integrated across the entire range of reflection angles, (θr, φr), equal to the diffuse
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Figure A.3: Diffuse BRDF as a function of incident elevation angle, θi, and
reflected elevation angle, θr, for b = 0.05 and ρdiff (λ) = 1).

reflectivity (i.e.,
2π∫
0

π
2∫
0

fd(θi, φi; θr, φr) cos θr sin θrdθrdφr = ρdiff (λ))? The answer is no;

this integration represents the diffuse reflectivity as a function of incident elevation

angle, θi. (i.e., ρdiff (λ, θi)) as shown in Figure A.4. As b increases, the trend is that

the diffuse reflectivity is less uniform over all angles and becomes more directional.

Next, Sandford and Robertson’s specular reflectance model requires defining

three unit vectors in relation to the reflecting surface: the source, ŝ, the observer, ô,

Figure A.4: Diffuse reflectivity as a function of incident elevation angle, θi.
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and the glint, ĝ. They are defined as [21:5]:

ŝ(θi, φi) = sin θi cos φix̂ + sin θi sin φiŷ + cos θiẑ (A.6)

ô(θr, φr) = sin θr cos φrx̂ + sin θr sin φrŷ + cos θrẑ (A.7)

ĝ(θi, φi; θr, φr) =
ô(θr, φr) + ŝ(θi, φi)√

2(1 + ô(θr, φr) · ŝ(θi, φi))
(A.8)

where all vectors are defined in Cartesian coordinates, and ĝ defines the unit vector

that bisects the angle between ŝ and ô. With ĝ computed, the angle, β, which is

defined between ĝ and the surface normal vector, n̂, can be determined from [21:6]:

β(θi, φi; θr, φr) = arccos[ĝ(θi, φi; θr, φr) · n̂]. (A.9)

When β = 0, the specular reflection is at a maximum. With β defined, the specular

BRDF is modeled by [21:20]:

fs(e, b, ε(λ), ρdiff (λ); θi, φi; θr, φr) =
1

4π
ρspec(λ, θi)

h(e, β)

H(e, θi)

1

cos θi

(A.10)

where e is the eccentricity of a circular ellipsoid that describes the angular width of

the specular lobe, ρspec(λ, θi) is the directional specular reflectivity specified by [21:20]:

ρspec(λ, θi) = 1− ρdiff (λ, θi)− ε(λ, θi), (A.11)

h(e, β) is surface structure function defined by [21:20]:

h(e, β) =
1

(e2 cos2 β + sin2β)2 , (A.12)

and H(e, θi) is a normalization factor defined by [21:21]:

H(e, θi) =
1

2e2

[
(1− e2) cos θi +

2e2 + (1− e2)2 cos2 θi√
(1− e2)2 cos2 θi + 4e2

]
. (A.13)
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As the specular BRDF is currently defined, a divergence exists as θr approaches 90

degrees; therefore, a cutoff factor must be applied to fs(θi, φi; θr, φr) to make the

energy in the specular lobe [21:22]:

d(b, θr) =
1

1 + b2 tan2 θr

. (A.14)

The total BRDF that describes a surface is then the sum of the diffuse and specular

components:

fr(e, b, ε(λ), ρdiff (λ); θi, φi; θr, φr) = fd + fs × d(b, θr) (A.15)

Using the total BRDF as defined, values for ε(λ), ρdiff (λ), b, and e can be

entered to provide a realistic representation of a surface’s reflectivity. Incorporating

the Sandford-Robertson parameters that Bortle measured in the mid-wave IR for bare

aluminum [3:69], the resulting total BRDF is shown in Figures A.5 and A.6 where

ε(λ) = 0.11, ρdiff (λ) = 0.02, b = 0.05, and e = 0.0042. Figure A.5 shows the BRDF

in a Cartesian plot as a function of θr and φr, while Figure A.6 shows the same result,

but the BRDF is plotted using spherical coordinates. Both plots demonstrate that

this material is very specular given the the strength of the specular lobe. Also, the

flatness of the Cartesian plot and the spherical shape of the spherical plot away from

the specular lobe shows that the BRDF, at those points, is very nearly perfectly diffuse

(i.e., Lambertian), and total BRDF can be described well by a fractional specularity

model.

Now, the question is whether the specular lobe is visible to the observer at the

observation angle. To answer this, the total BRDF at the appropriate observation

angle is plotted as a function of position across the cylindrical missile body, as shown

in Figure A.7. Figure A.7 shows that the total BRDF stays reasonably constant

across the central 90% of the missile body with a mean value of 6.07 × 10−3. As

expected, the BRDF becomes strongly specular at the grazing angles associated with
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Figure A.5: Total BRDF of bare Al on a Cartesian plot. Sandford-Robertson
parameters:ε(λ) = 0.11, ρdiff (λ) = 0.02, b = 0.05, and e = 0.0042.

Figure A.6: Total BRDF of bare Al on a spherical plot. Sandford-Robertson
parameters:ε(λ) = 0.11, ρdiff (λ) = 0.02, b = 0.05, and e = 0.0042.
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Figure A.7: Total BRDF of bare Al as a function of position on missile body
at the 61.6-degree observation angle. Missile body radius is 0.5 m. Sandford-
Robertson parameters:ε(λ) = 0.11, ρdiff (λ) = 0.02, b = 0.05, and e = 0.0042.

the missile’s edges, so the BRDF in the direction of the observer drops significantly.

These observations indicate that that DETEC scenario is within the diffuse part of

the BRDF and away from the specular lobe.

With the diffuse-reflection assumption justified, one more question needs to be

answered: How does the directional emissivity, specular reflectivity, and diffuse re-

flectivity change with position across the missile body? This question is answered

by computing the directional emissivity and reflectivities using equations (A.1) and

(A.11) As previously defined for bare aluminum, ε(λ) = 0.11 and ρdiff (λ) = 0.02,

Figure A.8 shows how the directional emissivity as a function of position across the

missile body. Figures A.9 and A.10 show the total diffuse and specular reflectivity

as a function of position across the missile body, respectively. All three figures show

their respective quantities being very constant across the missile body with the ex-

ception occurring at the missile body edges where grazing incidents effect dominate.

Computing the percent difference in directional emissivity with respect to the direc-

tional emissivity at the center position of the missile, the emissivity varies less than

1% across the central 90% of the missile body.
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Figure A.8: Directional emissivity as a function of position on the missile
body for bare Al.

Figure A.9: Directional diffuse reflectivity as a function of position on the
missile body for bare Al.
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Figure A.10: Directional specular reflectivity as a function of position on
the missile body for bare Al.

The same analysis performed on a different surface treatment like gloss white

paint, which has a high emissivity and is still specular, yields similar results. The

Sandford-Robertson parameters used for this case are ε(λ) = 0.88 and ρdiff (λ) = 0.05,

b = 0.08, and e = 0.012. At the observation angle, the total BRDF is again diffuse,

and the directional emissivity varies less than 1% across the central 80% of the missile

body.

From this analysis, the following conclusions can be made:

• The missile can be modeled as a Lambertian radiator because the BRDF is

clearly diffuse at the 61.6-degree observation angle.

• The deviation from Lambertian occurs at the grazing-incidence angles where

use of a Lambertian model could result in an over prediction of the emitted

radiation. However, since the projected area of the surface elements at these

angles is significantly reduced, it is anticipated that this overprediction will be

quite small.

• Fractional specularity is a valid method for modeling the emissivity and specular

and diffuse reflectivities for the types of surfaces and observation angles antici-
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pated in the DETEC scenario since they stay very constant across a significant

portion of the missile body.
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